Machine-Learning Modeling of Asphalt Crack Treatment Effectiveness

沥青 决策树 线性回归 人工神经网络 变量 回归分析 样品(材料) 沥青混凝土 计算机科学 机器学习 统计 人工智能 数学 材料科学 化学 色谱法 复合材料
作者
Zhenhua Huang,Maurizio Manzo,Liping Cai
出处
期刊:Journal of transportation engineering [American Society of Civil Engineers]
卷期号:147 (2) 被引量:6
标识
DOI:10.1061/jpeodx.0000274
摘要

Although many research projects have been completed to investigate asphalt crack treatment/repair effectiveness, all of them reported local investigation results with small sample sizes, incomplete time durations, and restricted types of sealants and/or treatment methods. Most importantly, machine-learning techniques have not been used to compare treatment methods and predict treatment effectiveness. In this study, all reported data regarding asphalt crack treatments were collected, and the large sample size data were comprehensively analyzed by statistical measures and machine-learning techniques to find the optimal crack treatment method. The variables including service time, environment temperature, type of sealant, treatment method, and traffic conditions were used as inputs, and the effectiveness of the asphalt crack treatment was selected as output information to compare the contribution of different variables for the treatment effectiveness and to provide prediction models. Chi-square test indicated that except for the variable “Traffic condition,” all other variables (Type of sealants, Treatment method, Service time, and Environmental temperature) had a significant relationship with the target variable (crack treatment effectiveness). The decision tree analysis results showed that the relative significance of the input variables to the target variable was ordered as Service time > Environmental temperature > Type of sealants > Treatment method > Traffic condition. The asphalt crack treatment effectiveness (%) can be predicted according to known variable values using the developed linear regression and artificial neural network (ANN) models. ANN model prediction has better performance than that of the linear regression model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助丁丁丁采纳,获得10
1秒前
1秒前
科研通AI5应助糖布里部采纳,获得10
1秒前
1秒前
小巧静珊发布了新的文献求助10
2秒前
CipherSage应助王成豪采纳,获得10
2秒前
杭苑博完成签到,获得积分10
2秒前
2秒前
2秒前
MoleMed发布了新的文献求助10
3秒前
bkagyin应助Yan采纳,获得10
3秒前
默默雨梅发布了新的文献求助10
4秒前
4秒前
Hilda007应助Southluuu采纳,获得10
4秒前
无极微光应助Ann采纳,获得20
4秒前
毛毛发布了新的文献求助20
5秒前
5秒前
5秒前
5秒前
yyy完成签到,获得积分10
6秒前
Jasper应助cllk采纳,获得10
6秒前
krzysku完成签到,获得积分10
6秒前
还没想好给还没想好的求助进行了留言
6秒前
暴龙战神发布了新的文献求助10
7秒前
NiNi发布了新的文献求助10
7秒前
8秒前
thomas发布了新的文献求助10
8秒前
徐小徐发布了新的文献求助10
8秒前
小巧静珊完成签到,获得积分20
9秒前
烟花应助诚心水蓝采纳,获得10
9秒前
俊逸千山发布了新的文献求助10
9秒前
大个应助清水采纳,获得10
10秒前
i7完成签到,获得积分10
10秒前
追寻的梦凡完成签到,获得积分10
10秒前
ningwu发布了新的文献求助10
11秒前
11秒前
倔强的大萝卜完成签到,获得积分0
11秒前
顾矜应助12345采纳,获得10
12秒前
王成豪完成签到,获得积分20
13秒前
llllll发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001747
求助须知:如何正确求助?哪些是违规求助? 4246864
关于积分的说明 13231103
捐赠科研通 4045670
什么是DOI,文献DOI怎么找? 2213151
邀请新用户注册赠送积分活动 1223362
关于科研通互助平台的介绍 1143663