Stable Electrospinning of Core-Functionalized Coaxial Fibers Enabled by the Minimum-Energy Interface Given by Partial Core–Sheath Miscibility

材料科学 混溶性 表面张力 芯(光纤) 复合材料 表面能 静电纺丝 聚合物 聚丙烯腈 化学工程 热力学 工程类 物理
作者
Shameek Vats,Manos Anyfantakis,Lawrence W. Honaker,Francesco Basoli,Jan P. F. Lagerwall
出处
期刊:Langmuir [American Chemical Society]
卷期号:37 (45): 13265-13277 被引量:8
标识
DOI:10.1021/acs.langmuir.1c01824
摘要

Core–sheath electrospinning is a powerful tool for producing composite fibers with one or multiple encapsulated functional materials, but many material combinations are difficult or even impossible to spin together. We show that the key to success is to ensure a well-defined core–sheath interface while also maintaining a constant and minimal interfacial energy across this interface. Using a thermotropic liquid crystal as a model functional core and polyacrylic acid or styrene-butadiene-styrene block copolymer as a sheath polymer, we study the effects of using water, ethanol, or tetrahydrofuran as polymer solvent. We find that the ideal core and sheath materials are partially miscible, with their phase diagram exhibiting an inner miscibility gap. Complete immiscibility yields a relatively high interfacial tension that causes core breakup, even preventing the core from entering the fiber-producing jet, whereas the lack of a well-defined interface in the case of complete miscibility eliminates the core–sheath morphology, and it turns the core into a coagulation bath for the sheath solution, causing premature gelation in the Taylor cone. Moreover, to minimize Marangoni flows in the Taylor cone due to local interfacial tension variations, a small amount of the sheath solvent should be added to the core prior to spinning. Our findings resolve a long-standing confusion regarding guidelines for selecting core and sheath fluids in core–sheath electrospinning. These discoveries can be applied to many other material combinations than those studied here, enabling new functional composites of large interest and application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
looklei发布了新的文献求助10
1秒前
我爱乒乓球完成签到 ,获得积分10
3秒前
3秒前
故渊丶完成签到,获得积分10
5秒前
颜老大完成签到,获得积分10
5秒前
乐乐应助周萌采纳,获得10
5秒前
慕青应助yfy_fairy采纳,获得10
5秒前
柏林寒冬应助季博常采纳,获得10
6秒前
6秒前
李健的小迷弟应助kcm采纳,获得30
6秒前
爱笑半雪完成签到,获得积分10
6秒前
CharlotteBlue发布了新的文献求助50
6秒前
黄青青完成签到,获得积分10
6秒前
Gstar发布了新的文献求助20
6秒前
LL完成签到,获得积分20
6秒前
高强发布了新的文献求助10
7秒前
7秒前
Jello完成签到,获得积分10
8秒前
单薄归尘完成签到 ,获得积分10
8秒前
IMP完成签到 ,获得积分10
8秒前
因子完成签到,获得积分10
8秒前
爱打乒乓球完成签到,获得积分10
9秒前
Liao发布了新的文献求助10
9秒前
顾矜应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得30
10秒前
hello完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助dery采纳,获得10
11秒前
star应助科研通管家采纳,获得100
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
今后应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295127
求助须知:如何正确求助?哪些是违规求助? 4444682
关于积分的说明 13834514
捐赠科研通 4328977
什么是DOI,文献DOI怎么找? 2376485
邀请新用户注册赠送积分活动 1371748
关于科研通互助平台的介绍 1336961