亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GalaxyWater-CNN: Prediction of Water Positions on the Protein Structure by a 3D-Convolutional Neural Network

卷积神经网络 计算机科学 分子 氢键 源代码 生物系统 蛋白质结构预测 人工神经网络 蛋白质结构 功能(生物学) 人工智能 蛋白质结晶 化学 生物 生物化学 有机化学 进化生物学 结晶 操作系统
作者
Sangwoo Park,Chaok Seok
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (13): 3157-3168 被引量:23
标识
DOI:10.1021/acs.jcim.2c00306
摘要

Proteins interact with numerous water molecules to perform their physiological functions in biological organisms. Most water molecules act as solvent media; hence, their roles may be considered implicitly in theoretical treatments of protein structure and function. However, some water molecules interact intimately with proteins and require explicit treatment to understand their effects. Most physics-based computational methods are limited in their ability to accurately locate water molecules on protein surfaces because of inaccurate energy functions. Instead of relying on an energy function, this study attempts to learn the locations of water molecules from structural data. GalaxyWater-convolutional neural network (CNN) predicts water positions on protein chains, protein-protein interfaces, and protein-compound binding sites using a 3D-CNN model that is trained to generate a water score map on a given protein structure. The training data are compiled from high-resolution protein crystal structures resolved together with water molecules. GalaxyWater-CNN shows improved water prediction performance both in the coverage of crystal water molecules and in the accuracy of the predicted water positions when compared with previous energy-based methods. This method shows a superior performance in predicting water molecules that form hydrogen-bond networks precisely. The web service and the source code of this water prediction method are freely available at https://galaxy.seoklab.org/gwcnn and https://github.com/seoklab/GalaxyWater-CNN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣心完成签到,获得积分20
24秒前
小白菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
江流有声完成签到 ,获得积分10
2分钟前
斯文麦片完成签到 ,获得积分10
2分钟前
2分钟前
结实初翠发布了新的文献求助10
2分钟前
完美世界应助帅123采纳,获得10
2分钟前
2分钟前
j1kxm完成签到,获得积分10
2分钟前
2分钟前
舒服的觅夏完成签到,获得积分10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
帅123发布了新的文献求助10
2分钟前
2分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
Orange应助Oven采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
Oven发布了新的文献求助10
3分钟前
充电宝应助结实初翠采纳,获得10
3分钟前
3分钟前
Oven完成签到,获得积分10
3分钟前
4分钟前
结实初翠发布了新的文献求助10
4分钟前
慕青应助结实初翠采纳,获得10
4分钟前
月儿完成签到 ,获得积分10
5分钟前
bc举报Colin求助涉嫌违规
5分钟前
乐乐应助褚曼安采纳,获得10
5分钟前
www完成签到 ,获得积分10
5分钟前
5分钟前
沐风完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
乾坤侠客LW完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3343966
关于积分的说明 10318223
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323