Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66

吸附 分子动力学 扩散 金属有机骨架 灵活性(工程) 氙气 化学物理 化学 分子 材料科学 统计物理学 计算化学 热力学 物理化学 物理 统计 数学 有机化学
作者
Siddarth K. Achar,Jacob J. Wardzala,Leonardo Bernasconi,Linfeng Zhang,J. Karl Johnson
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:18 (6): 3593-3606 被引量:21
标识
DOI:10.1021/acs.jctc.2c00010
摘要

Modeling of diffusion of adsorbates through porous materials with atomistic molecular dynamics (MD) can be a challenging task if the flexibility of the adsorbent needs to be included. This is because potentials need to be developed that accurately account for the motion of the adsorbent in response to the presence of adsorbate molecules. In this work, we show that it is possible to use accurate machine learning atomistic potentials for metal-organic frameworks in concert with classical potentials for adsorbates to accurately compute diffusivities though a hybrid potential approach. As a proof-of-concept, we have developed an accurate deep learning potential (DP) for UiO-66, a metal-organic framework, and used this DP to perform hybrid potential simulations, modeling diffusion of neon and xenon through the crystal. The adsorbate-adsorbate interactions were modeled with Lennard-Jones (LJ) potentials, the adsorbent-adsorbent interactions were described by the DP, and the adsorbent-adsorbate interactions used LJ cross-interactions. Thus, our hybrid potential allows for adsorbent-adsorbate interactions with classical potentials but models the response of the adsorbent to the presence of the adsorbate through near-DFT accuracy DPs. This hybrid approach does not require refitting the DP for new adsorbates. We calculated self-diffusion coefficients for Ne in UiO-66 from DFT-MD, our hybrid DP/LJ approach, and from two different classical potentials for UiO-66. Our DP/LJ results are in excellent agreement with DFT-MD. We modeled diffusion of Xe in UiO-66 with DP/LJ and a classical potential. Diffusion of Xe in UiO-66 is about a factor of 30 slower than that of Ne, so it is not computationally feasible to compute Xe diffusion with DFT-MD. Our hybrid DP-classical potential approach can be applied to other MOFs and other adsorbates, making it possible to use an accurate DP generated from DFT simulations of an empty adsorbent in concert with existing classical potentials for adsorbates to model adsorption and diffusion within the porous material, including adsorbate-induced changes to the framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
77完成签到 ,获得积分10
1秒前
1秒前
slow完成签到,获得积分20
1秒前
君莫笑发布了新的文献求助10
1秒前
Amon完成签到 ,获得积分10
1秒前
小白应助TaoJ采纳,获得20
2秒前
re完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
cwt完成签到,获得积分10
4秒前
两篇sci发布了新的文献求助10
4秒前
LLLLL发布了新的文献求助20
4秒前
5秒前
re发布了新的文献求助10
5秒前
科研通AI5应助肉肉采纳,获得10
6秒前
小胡完成签到,获得积分10
7秒前
cwt发布了新的文献求助10
7秒前
xiao完成签到,获得积分10
8秒前
8秒前
8秒前
MMM完成签到,获得积分20
8秒前
HHW完成签到 ,获得积分10
9秒前
YOYOYO举报神外王001求助涉嫌违规
10秒前
10秒前
10秒前
10秒前
zhenliu发布了新的文献求助10
11秒前
11秒前
帅的罪鸽认了给帅的罪鸽认了的求助进行了留言
12秒前
12秒前
完美世界应助小胡采纳,获得10
12秒前
13秒前
zzz完成签到 ,获得积分10
13秒前
13秒前
bkagyin应助liangx采纳,获得10
13秒前
顾矜应助kfwxz2022采纳,获得10
13秒前
LDDDGR发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804947
求助须知:如何正确求助?哪些是违规求助? 3350110
关于积分的说明 10347073
捐赠科研通 3065877
什么是DOI,文献DOI怎么找? 1683411
邀请新用户注册赠送积分活动 808927
科研通“疑难数据库(出版商)”最低求助积分说明 765151