Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66

吸附 分子动力学 扩散 金属有机骨架 灵活性(工程) 氙气 化学物理 化学 分子 材料科学 计算化学 热力学 物理化学 物理 有机化学 统计 数学
作者
Siddarth K. Achar,Jacob J. Wardzala,Leonardo Bernasconi,Linfeng Zhang,J. Karl Johnson
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:18 (6): 3593-3606 被引量:42
标识
DOI:10.1021/acs.jctc.2c00010
摘要

Modeling of diffusion of adsorbates through porous materials with atomistic molecular dynamics (MD) can be a challenging task if the flexibility of the adsorbent needs to be included. This is because potentials need to be developed that accurately account for the motion of the adsorbent in response to the presence of adsorbate molecules. In this work, we show that it is possible to use accurate machine learning atomistic potentials for metal-organic frameworks in concert with classical potentials for adsorbates to accurately compute diffusivities though a hybrid potential approach. As a proof-of-concept, we have developed an accurate deep learning potential (DP) for UiO-66, a metal-organic framework, and used this DP to perform hybrid potential simulations, modeling diffusion of neon and xenon through the crystal. The adsorbate-adsorbate interactions were modeled with Lennard-Jones (LJ) potentials, the adsorbent-adsorbent interactions were described by the DP, and the adsorbent-adsorbate interactions used LJ cross-interactions. Thus, our hybrid potential allows for adsorbent-adsorbate interactions with classical potentials but models the response of the adsorbent to the presence of the adsorbate through near-DFT accuracy DPs. This hybrid approach does not require refitting the DP for new adsorbates. We calculated self-diffusion coefficients for Ne in UiO-66 from DFT-MD, our hybrid DP/LJ approach, and from two different classical potentials for UiO-66. Our DP/LJ results are in excellent agreement with DFT-MD. We modeled diffusion of Xe in UiO-66 with DP/LJ and a classical potential. Diffusion of Xe in UiO-66 is about a factor of 30 slower than that of Ne, so it is not computationally feasible to compute Xe diffusion with DFT-MD. Our hybrid DP-classical potential approach can be applied to other MOFs and other adsorbates, making it possible to use an accurate DP generated from DFT simulations of an empty adsorbent in concert with existing classical potentials for adsorbates to model adsorption and diffusion within the porous material, including adsorbate-induced changes to the framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小六子123完成签到,获得积分10
4秒前
清脆松发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高端完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助100
7秒前
小杜完成签到,获得积分10
8秒前
我是波及完成签到 ,获得积分10
9秒前
我是老大应助下课闹闹采纳,获得10
9秒前
水吉水吉完成签到,获得积分10
9秒前
10秒前
12秒前
王肄博发布了新的文献求助10
12秒前
14秒前
14秒前
星期天发布了新的文献求助10
14秒前
15秒前
15秒前
岳苏佳发布了新的文献求助10
17秒前
Gentleman完成签到,获得积分10
18秒前
123_发布了新的文献求助10
19秒前
19秒前
怪僻完成签到 ,获得积分10
19秒前
xdedd发布了新的文献求助10
20秒前
星期天完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
哈哈哈完成签到,获得积分20
22秒前
开心的小馒头完成签到,获得积分10
24秒前
泽北完成签到 ,获得积分10
25秒前
烟花应助小王采纳,获得10
28秒前
慕青应助清脆松采纳,获得10
28秒前
double发布了新的文献求助10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240394
求助须知:如何正确求助?哪些是违规求助? 3774167
关于积分的说明 11852279
捐赠科研通 3429479
什么是DOI,文献DOI怎么找? 1882300
邀请新用户注册赠送积分活动 934174
科研通“疑难数据库(出版商)”最低求助积分说明 840873