A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications

高光谱成像 人工智能 计算机科学 机器学习 深度学习 精准农业 卷积神经网络 农业 多光谱图像 支持向量机 领域(数学) 地理 数学 考古 纯数学
作者
Atiya Khan,Amol D. Vibhute,Shankar Mali,Chandrashekhar H. Patil
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:69: 101678-101678 被引量:199
标识
DOI:10.1016/j.ecoinf.2022.101678
摘要

The globe's population is increasing day by day, which causes the severe problem of organic food for everyone. Farmers are becoming progressively conscious of the need to control numerous essential factors such as crop health, water or fertilizer use, and harmful diseases in the field. However, it is challenging to monitor agricultural activities. Therefore, precision agriculture is an important decision support system for food production and decision-making. Several methods and approaches have been used to support precision agricultural practices. The present study performs a systematic literature review on hyperspectral imaging technology and the most advanced deep learning and machine learning algorithm used in agriculture applications to extract and synthesize the significant datasets and algorithms. We reviewed legal studies carefully, highlighted hyperspectral datasets, focused on the most methods used for hyperspectral applications in agricultural sectors, and gained insight into the critical problems and challenges in the hyperspectral data processing. According to our study, it has been found that the Hyperion hyperspectral, Landsat-8, and Sentinel 2 multispectral datasets were mainly used for agricultural applications. The most applied machine learning method was support vector machine and random forest. In addition, the deep learning-based Convolutional Neural Networks (CNN) model is mainly used for crop classification due to its high performance with hyperspectral datasets. The present review will be helpful to the new researchers working in the field of hyperspectral remote sensing for agricultural applications with a machine and deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo发布了新的文献求助30
刚刚
爆米花应助fffff采纳,获得10
2秒前
鹭立江头发布了新的文献求助30
2秒前
隐形的糖豆完成签到,获得积分20
2秒前
爆米花应助ZZzz采纳,获得10
3秒前
努力看文献的小杨完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
xdd完成签到,获得积分10
5秒前
5秒前
wry完成签到,获得积分10
6秒前
英姑应助酒酿梅子采纳,获得10
6秒前
7秒前
8秒前
彬彬完成签到,获得积分10
8秒前
刻苦千愁完成签到,获得积分10
9秒前
浅时光完成签到,获得积分10
9秒前
zxcvb666发布了新的文献求助10
10秒前
10秒前
高兴璎完成签到,获得积分10
10秒前
Akim应助yjf采纳,获得10
11秒前
科研通AI5应助科研小助理采纳,获得10
11秒前
11秒前
彬彬发布了新的文献求助10
12秒前
火星上夜云完成签到 ,获得积分20
13秒前
香蕉觅云应助阳光的中蓝采纳,获得10
14秒前
lao333完成签到,获得积分10
14秒前
14秒前
14秒前
懂你的菜发布了新的文献求助10
15秒前
鼠小姐应助jxl采纳,获得10
15秒前
18秒前
科研通AI2S应助自信的坤采纳,获得10
18秒前
小二郎应助CHEN采纳,获得10
19秒前
热心市民应助鹭立江头采纳,获得10
20秒前
fffff发布了新的文献求助10
21秒前
CodeCraft应助贾晓宇采纳,获得10
21秒前
安慧容完成签到,获得积分10
22秒前
香蕉觅云应助懂你的菜采纳,获得10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803508
求助须知:如何正确求助?哪些是违规求助? 3348396
关于积分的说明 10338293
捐赠科研通 3064441
什么是DOI,文献DOI怎么找? 1682571
邀请新用户注册赠送积分活动 808307
科研通“疑难数据库(出版商)”最低求助积分说明 764034