Distinguishing discrete and continuous behavioral variability using warped autoregressive HMMs

自回归模型 动态时间归整 潜变量 计算机科学 隐马尔可夫模型 神经行为学 图像扭曲 人工智能 音节 语音识别 模式识别(心理学) 心理学 数学 认知心理学 统计 感觉系统
作者
Julia C. Costacurta,Lea Duncker,Blue Sheffer,Winthrop F. Gillis,Caleb Weinreb,Jeffrey E. Markowitz,Sandeep Robert Datta,Alex H. Williams,Scott W. Linderman
标识
DOI:10.1101/2022.06.10.495690
摘要

Abstract A core goal in systems neuroscience and neuroethology is to understand how neural circuits generate naturalistic behavior. One foundational idea is that complex naturalistic behavior may be composed of sequences of stereotyped behavioral syllables, which combine to generate rich sequences of actions. To investigate this, a common approach is to use autoregressive hidden Markov models (ARHMMs) to segment video into discrete behavioral syllables. While these approaches have been successful in extracting syllables that are interpretable, they fail to account for other forms of behavioral variability, such as differences in speed, which may be better described as continuous in nature. To overcome these limitations, we introduce a class of warped ARHMMs (WARHMM). As is the case in the ARHMM, behavior is modeled as a mixture of autoregressive dynamics. However, the dynamics under each discrete latent state (i.e. each behavioral syllable) are additionally modulated by a continuous latent “warping variable.” We present two versions of warped ARHMM in which the warping variable affects the dynamics of each syllable either linearly or nonlinearly. Using depth-camera recordings of freely moving mice, we demonstrate that the failure of ARHMMs to account for continuous behavioral variability results in duplicate cluster assignments. WARHMM achieves similar performance to the standard ARHMM while using fewer behavioral syllables. Further analysis of behavioral measurements in mice demonstrates that WARHMM identifies structure relating to response vigor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注完成签到,获得积分10
刚刚
青橘短衫完成签到,获得积分10
2秒前
niuma完成签到 ,获得积分10
2秒前
Xiaoming85完成签到,获得积分10
4秒前
4秒前
Srui完成签到,获得积分10
5秒前
机智白竹完成签到,获得积分10
5秒前
魔幻蓉发布了新的文献求助10
6秒前
天天开心发布了新的文献求助10
7秒前
陸陸大顺完成签到,获得积分20
7秒前
8秒前
YanZhe完成签到,获得积分10
9秒前
9秒前
sanmu发布了新的文献求助30
10秒前
Lz555完成签到 ,获得积分10
12秒前
whb825258发布了新的文献求助10
13秒前
姜露萍完成签到,获得积分10
13秒前
陸陸大顺发布了新的文献求助10
13秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
小虫学长应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
Owen应助魔幻蓉采纳,获得10
14秒前
缥缈的平露完成签到,获得积分10
14秒前
海的蓝色是水完成签到,获得积分20
15秒前
无花果应助小伙伴采纳,获得10
17秒前
20秒前
tzy完成签到,获得积分10
22秒前
完美世界应助天天开心采纳,获得10
23秒前
24秒前
zz发布了新的文献求助10
26秒前
sanmu完成签到,获得积分10
26秒前
butubutu完成签到,获得积分10
28秒前
31秒前
共享精神应助kingmantj采纳,获得10
32秒前
33秒前
666完成签到 ,获得积分10
34秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823487
求助须知:如何正确求助?哪些是违规求助? 3365878
关于积分的说明 10437949
捐赠科研通 3085056
什么是DOI,文献DOI怎么找? 1697106
邀请新用户注册赠送积分活动 816209
科研通“疑难数据库(出版商)”最低求助积分说明 769442