A Meta-Learning Method for Electric Machine Bearing Fault Diagnosis Under Varying Working Conditions With Limited Data

计算机科学 断层(地质) 方位(导航) 元学习(计算机科学) 人工智能 任务(项目管理) 机器学习 一般化 数据挖掘 工程类 数学 地质学 数学分析 地震学 系统工程
作者
Jianjun Chen,Weihao Hu,Di Cao,Zhenyuan Zhang,Zhe Chen,Frede Blaabjerg
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2552-2564 被引量:71
标识
DOI:10.1109/tii.2022.3165027
摘要

Effective detection of fault in rolling bearings with a limited amount of data is essential for the safe operation of electric machines. This article proposes a novel meta-learning-enabled method for the detection of fault in rolling bearings of electric machines under varying working conditions with limited data. The fault diagnosis under various working conditions is cast as a few-shot classification problem, which is solved using a model-agnostic meta-learning-based model. Specifically, a meta-learner is first trained using a series of interrelated fault-diagnosis tasks under various working conditions. During this stage, the gradient-by-gradient rule is utilized for parameter optimization to achieve an effective representation of these tasks. Then, the parameters of the meta-learner are refined on a new task. This technique can achieve fast adaptation to new tasks by utilizing only few-shot samples. The proposed method can obtain high fault-detection accuracy under various working conditions when only a limited amount of data is available. Comparative tests among various methods were carried out on the Case Western Reserve University Bearing Dataset and the Paderborn University Rolling Bearing Dataset. The results show that the proposed model performs better than other state-of-the-art methods under various working conditions; our method has stronger generalization ability and faster adaptation ability. The fault diagnosis accuracy for both datasets was at least 99%, which proves that the proposed strategy can be flexibly applied to various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
junjie完成签到,获得积分10
1秒前
赘婿应助噜噜采纳,获得10
3秒前
5秒前
周同学发布了新的文献求助10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
若雨凌风应助科研通管家采纳,获得10
6秒前
老板娘发布了新的文献求助10
7秒前
一一应助陈念采纳,获得10
7秒前
深情安青应助笑点低雨竹采纳,获得10
8秒前
宝玉发布了新的文献求助10
11秒前
诚心的健柏完成签到,获得积分20
11秒前
11秒前
12秒前
善学以致用应助ardejiang采纳,获得10
13秒前
金熙美完成签到,获得积分20
14秒前
15秒前
科研通AI2S应助宝玉采纳,获得10
15秒前
spujo应助宝玉采纳,获得10
15秒前
羽翼深蓝完成签到,获得积分10
16秒前
17秒前
认真的寻绿完成签到,获得积分10
17秒前
如意的思真完成签到,获得积分10
18秒前
木鸽子发布了新的文献求助10
18秒前
禹代秋发布了新的文献求助10
18秒前
19秒前
20秒前
说书人发布了新的文献求助10
20秒前
爆米花应助jinxiao采纳,获得10
20秒前
田様应助吴军霄采纳,获得10
21秒前
21秒前
22秒前
cdercder应助羽翼深蓝采纳,获得10
22秒前
djam发布了新的文献求助10
22秒前
22秒前
元气满满完成签到,获得积分10
22秒前
下雨会打伞完成签到 ,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787623
求助须知:如何正确求助?哪些是违规求助? 3333179
关于积分的说明 10260046
捐赠科研通 3048732
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338