A Meta-Learning Method for Electric Machine Bearing Fault Diagnosis Under Varying Working Conditions With Limited Data

计算机科学 断层(地质) 方位(导航) 元学习(计算机科学) 人工智能 任务(项目管理) 机器学习 一般化 代表(政治) 数据挖掘 工程类 数学 数学分析 系统工程 地震学 地质学 政治 法学 政治学
作者
Jianjun Chen,Weihao Hu,Di Cao,Zhenyuan Zhang,Zhe Chen,Frede Blaabjerg
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2552-2564 被引量:94
标识
DOI:10.1109/tii.2022.3165027
摘要

Effective detection of fault in rolling bearings with a limited amount of data is essential for the safe operation of electric machines. This article proposes a novel meta-learning-enabled method for the detection of fault in rolling bearings of electric machines under varying working conditions with limited data. The fault diagnosis under various working conditions is cast as a few-shot classification problem, which is solved using a model-agnostic meta-learning-based model. Specifically, a meta-learner is first trained using a series of interrelated fault-diagnosis tasks under various working conditions. During this stage, the gradient-by-gradient rule is utilized for parameter optimization to achieve an effective representation of these tasks. Then, the parameters of the meta-learner are refined on a new task. This technique can achieve fast adaptation to new tasks by utilizing only few-shot samples. The proposed method can obtain high fault-detection accuracy under various working conditions when only a limited amount of data is available. Comparative tests among various methods were carried out on the Case Western Reserve University Bearing Dataset and the Paderborn University Rolling Bearing Dataset. The results show that the proposed model performs better than other state-of-the-art methods under various working conditions; our method has stronger generalization ability and faster adaptation ability. The fault diagnosis accuracy for both datasets was at least 99%, which proves that the proposed strategy can be flexibly applied to various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可能不够完成签到,获得积分10
刚刚
ceng发布了新的文献求助30
1秒前
852应助汉字采纳,获得10
1秒前
M.完成签到,获得积分10
1秒前
李理完成签到,获得积分20
2秒前
2秒前
木槿完成签到,获得积分10
2秒前
orixero应助6666采纳,获得10
2秒前
脑洞疼应助自由的松采纳,获得10
3秒前
小蘑菇应助白色的明镜采纳,获得10
3秒前
Akim应助lzj采纳,获得10
4秒前
orixero应助aker3采纳,获得10
4秒前
大乐发布了新的文献求助10
5秒前
6秒前
风吹麦田应助任性映秋采纳,获得40
6秒前
到极点完成签到,获得积分20
6秒前
6秒前
666完成签到,获得积分10
7秒前
ddd发布了新的文献求助10
7秒前
8秒前
稚鱼完成签到,获得积分20
9秒前
到极点发布了新的文献求助30
10秒前
一条小鱼发布了新的文献求助10
10秒前
10秒前
Jaycee发布了新的文献求助10
10秒前
Redinn完成签到,获得积分10
11秒前
11秒前
Yiy完成签到 ,获得积分0
11秒前
11秒前
拉长的绮山完成签到,获得积分20
14秒前
16秒前
海龙发布了新的文献求助10
16秒前
喜悦兰完成签到,获得积分10
16秒前
16秒前
aa123发布了新的文献求助10
16秒前
李理发布了新的文献求助10
17秒前
AlwaysKim发布了新的文献求助10
18秒前
18秒前
Rocky完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468475
求助须知:如何正确求助?哪些是违规求助? 4571886
关于积分的说明 14332538
捐赠科研通 4498526
什么是DOI,文献DOI怎么找? 2464602
邀请新用户注册赠送积分活动 1453226
关于科研通互助平台的介绍 1427841