DTI-HETA: prediction of drug–target interactions based on GCN and GAT on heterogeneous graph

计算机科学 图形 节点(物理) 图嵌入 嵌入 异构网络 注意力网络 数据挖掘 人工智能 机器学习 理论计算机科学 结构工程 电信 无线网络 工程类 无线
作者
Kanghao Shao,Yunhao Zhang,Yuqi Wen,Zhongnan Zhang,Song He,Xiaochen Bo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:30
标识
DOI:10.1093/bib/bbac109
摘要

Drug-target interaction (DTI) prediction plays an important role in drug repositioning, drug discovery and drug design. However, due to the large size of the chemical and genomic spaces and the complex interactions between drugs and targets, experimental identification of DTIs is costly and time-consuming. In recent years, the emerging graph neural network (GNN) has been applied to DTI prediction because DTIs can be represented effectively using graphs. However, some of these methods are only based on homogeneous graphs, and some consist of two decoupled steps that cannot be trained jointly. To further explore GNN-based DTI prediction by integrating heterogeneous graph information, this study regards DTI prediction as a link prediction problem and proposes an end-to-end model based on HETerogeneous graph with Attention mechanism (DTI-HETA). In this model, a heterogeneous graph is first constructed based on the drug-drug and target-target similarity matrices and the DTI matrix. Then, the graph convolutional neural network is utilized to obtain the embedded representation of the drugs and targets. To highlight the contribution of different neighborhood nodes to the central node in aggregating the graph convolution information, a graph attention mechanism is introduced into the node embedding process. Afterward, an inner product decoder is applied to predict DTIs. To evaluate the performance of DTI-HETA, experiments are conducted on two datasets. The experimental results show that our model is superior to the state-of-the-art methods. Also, the identification of novel DTIs indicates that DTI-HETA can serve as a powerful tool for integrating heterogeneous graph information to predict DTIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
科研通AI5应助彩色修洁采纳,获得10
3秒前
快乐听南完成签到 ,获得积分10
3秒前
Betty发布了新的文献求助10
4秒前
up发布了新的文献求助10
5秒前
6秒前
十一发布了新的文献求助10
7秒前
喜洋洋完成签到 ,获得积分10
7秒前
方南莲完成签到,获得积分10
7秒前
8秒前
逐风发布了新的文献求助10
9秒前
柯彦完成签到 ,获得积分10
10秒前
up完成签到,获得积分10
12秒前
16秒前
奥利奥爱好者完成签到,获得积分10
17秒前
烤鸭发布了新的文献求助30
18秒前
DHY完成签到,获得积分10
19秒前
玩是罪恶的完成签到,获得积分10
20秒前
SYLH应助平常甜瓜采纳,获得10
24秒前
壮观的凝阳完成签到,获得积分20
24秒前
MQ发布了新的文献求助10
25秒前
25秒前
orixero应助可爱的番薯采纳,获得10
26秒前
26秒前
郦稀完成签到,获得积分10
28秒前
29秒前
youyouyou发布了新的文献求助10
29秒前
Betty发布了新的文献求助10
30秒前
中单阿飞发布了新的文献求助10
31秒前
32秒前
louise发布了新的文献求助10
36秒前
37秒前
37秒前
ll完成签到 ,获得积分10
38秒前
nini完成签到,获得积分10
41秒前
42秒前
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818977
求助须知:如何正确求助?哪些是违规求助? 3362055
关于积分的说明 10415138
捐赠科研通 3080350
什么是DOI,文献DOI怎么找? 1694313
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768365