卡尔曼滤波器
均方误差
扩展卡尔曼滤波器
控制理论(社会学)
不变扩展卡尔曼滤波器
方位角
滤波器(信号处理)
数学
雷达跟踪器
平方根
集合卡尔曼滤波器
计算机科学
雷达
算法
统计
人工智能
计算机视觉
电信
几何学
控制(管理)
作者
Mahendra Mallick,Radhika Mandya Nagaraju,Zhansheng Duan
标识
DOI:10.1109/iccais52680.2021.9624611
摘要
We consider the state estimation of a highly maneuvering aircraft using an air moving target indicator (AMTI) radar. The AMTI radar measures the range, azimuth, and radial velocity of the target. In our previous work, we used the interacting multiple model (IMM) filter with the extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) using the AMTI measurements. In this paper, we use the converted measurements in an IMM-CKF and analyze the performances of these two types of algorithms. The converted measurements include the unbiased converted measurement (UCM) and modified unbiased converted measurement (MUCM) or conditional mean. The performances of the filters are analyzed using the root mean square position and velocity errors, root time-averaged mean square (RTAMS) error, average normalized estimation error squared (ANEES), mode probabilities, and computational cost. We also compute the posterior Cramér-Rao lower bound to evaluate these two types of algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI