RIC-Net: A plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism

枯萎病 计算机科学 块状结构 人工智能 植物病害 残余物 模式识别(心理学) 鉴定(生物学) 机制(生物学) 机器学习 卷积神经网络 农业工程 生物技术 农学 数学 生物 工程类 统计 算法 植物 哲学 认识论 估计员
作者
Yun Zhao,Cheng Sun,Xing Xu,Jiagui Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106644-106644 被引量:64
标识
DOI:10.1016/j.compag.2021.106644
摘要

In this paper, we proposed a convolutional neural network based on Inception and residual structure with an embedded modified convolutional block attention module (CBAM), aiming to improve the classification of plant leaf diseases. Corn, potatoes and tomatoes are the most cultivated grains in southern China. The leaves of the three crops are very fragile and sensitive and are susceptible to leaf diseases, such as leaf blight of corn, late blight of potato and mosaic virus of tomato. These diseases cannot be identified at early stages. Therefore, an efficient solution is proposed by deep learning techniques to detect the disease categories of crops, which can effectively prevent the spread of diseases and ensure the normal growth of plants. In this experiment, our model achieved an overall accuracy of 99.55% for the identification of the three diseases of corn, potato and tomato. In addition, we tested the three plants individually. The classification accuracy of our model on corn, potato and tomato was 98.44%, 99.43% and 95.20%, respectively. We have also developed a web-based real-time plant disease classification system and deployed our model. The system had good performance in time and accuracy evaluation metrics. The results of this study showed that our model had fewer parameters, shorter training time, and higher recognition accuracy compared to existing image classification models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大喜子发布了新的文献求助10
1秒前
Liam发布了新的文献求助10
1秒前
nozero应助肥肥采纳,获得50
1秒前
早日成发布了新的文献求助10
1秒前
搞怪的笑南完成签到,获得积分10
1秒前
科研小白菜完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
缥缈的玉米完成签到,获得积分20
3秒前
3秒前
redflower发布了新的文献求助10
4秒前
许甜甜鸭应助wy0409采纳,获得10
4秒前
4秒前
5秒前
centlay发布了新的文献求助50
6秒前
积极问芙完成签到,获得积分20
6秒前
4869发布了新的文献求助10
7秒前
7秒前
kaitohan完成签到 ,获得积分10
8秒前
8秒前
大喜子完成签到,获得积分10
8秒前
junjun发布了新的文献求助10
8秒前
iwsaml发布了新的文献求助10
9秒前
吱吱发布了新的文献求助10
9秒前
10秒前
CodeCraft应助黄守仁采纳,获得20
10秒前
10秒前
干雅柏发布了新的文献求助10
10秒前
10秒前
六水居士发布了新的文献求助10
10秒前
NexusExplorer应助无私映秋采纳,获得10
10秒前
11秒前
Proudmoore完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
酷酷涵阳完成签到,获得积分10
12秒前
1234发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818180
求助须知:如何正确求助?哪些是违规求助? 3361331
关于积分的说明 10412348
捐赠科研通 3079520
什么是DOI,文献DOI怎么找? 1691267
邀请新用户注册赠送积分活动 814471
科研通“疑难数据库(出版商)”最低求助积分说明 768178