Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases

无线电技术 恶性肿瘤 医学 卷积神经网络 人工智能 结直肠癌 磁共振成像 计算机科学 转移 多学科方法 癌症 机器学习 医学物理学 放射科 病理 内科学 社会学 社会科学
作者
Gianluca Rompianesi,Francesca Pegoraro,Carlo Ceresa,Roberto Montalti,Roberto Troisi
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:28 (1): 108-122 被引量:67
标识
DOI:10.3748/wjg.v28.i1.108
摘要

Colorectal cancer (CRC) is the third most common malignancy worldwide, with approximately 50% of patients developing colorectal cancer liver metastasis (CRLM) during the follow-up period. Management of CRLM is best achieved via a multidisciplinary approach and the diagnostic and therapeutic decision-making process is complex. In order to optimize patients' survival and quality of life, there are several unsolved challenges which must be overcome. These primarily include a timely diagnosis and the identification of reliable prognostic factors. Furthermore, to allow optimal treatment options, a precision-medicine, personalized approach is required. The widespread digitalization of healthcare generates a vast amount of data and together with accessible high-performance computing, artificial intelligence (AI) technologies can be applied. By increasing diagnostic accuracy, reducing timings and costs, the application of AI could help mitigate the current shortcomings in CRLM management. In this review we explore the available evidence of the possible role of AI in all phases of the CRLM natural history. Radiomics analysis and convolutional neural networks (CNN) which combine computed tomography (CT) images with clinical data have been developed to predict CRLM development in CRC patients. AI models have also proven themselves to perform similarly or better than expert radiologists in detecting CRLM on CT and magnetic resonance scans or identifying them from the noninvasive analysis of patients' exhaled air. The application of AI and machine learning (ML) in diagnosing CRLM has also been extended to histopathological examination in order to rapidly and accurately identify CRLM tissue and its different histopathological growth patterns. ML and CNN have shown good accuracy in predicting response to chemotherapy, early local tumor progression after ablation treatment, and patient survival after surgical treatment or chemotherapy. Despite the initial enthusiasm and the accumulating evidence, AI technologies' role in healthcare and CRLM management is not yet fully established. Its limitations mainly concern safety and the lack of regulation and ethical considerations. AI is unlikely to fully replace any human role but could be actively integrated to facilitate physicians in their everyday practice. Moving towards a personalized and evidence-based patient approach and management, further larger, prospective and rigorous studies evaluating AI technologies in patients at risk or affected by CRLM are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dajiejie完成签到 ,获得积分10
刚刚
自由的尔蓉完成签到 ,获得积分10
刚刚
钇铯完成签到,获得积分10
2秒前
sunnian发布了新的文献求助10
4秒前
小卓子发布了新的文献求助20
4秒前
叶世玉完成签到,获得积分10
5秒前
modesty发布了新的文献求助10
6秒前
无限白易应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得30
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
轻松诗霜完成签到 ,获得积分10
9秒前
modesty完成签到,获得积分10
14秒前
14秒前
14秒前
一口蒜苗完成签到,获得积分10
14秒前
汉堡包应助李啊李嘉图采纳,获得10
15秒前
小小沙完成签到,获得积分10
15秒前
15秒前
背后书雪完成签到 ,获得积分10
16秒前
16秒前
16秒前
手残症完成签到,获得积分10
17秒前
18秒前
20秒前
乌禅发布了新的文献求助10
20秒前
FOLY发布了新的文献求助10
21秒前
sunnian发布了新的文献求助30
21秒前
22秒前
科yt发布了新的文献求助10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846001
求助须知:如何正确求助?哪些是违规求助? 3388317
关于积分的说明 10552825
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713223
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774974