纳米颗粒
纳米技术
细胞毒性
背景(考古学)
材料科学
表面电荷
药物输送
阳离子聚合
生物物理学
生物相容性
表征(材料科学)
纳米凝胶
聚乙烯亚胺
化学
磁性纳米粒子
表面改性
纳米材料
细胞
纳米毒理学
双功能
聚合
毒品携带者
纳米医学
纳米生物技术
糖萼
聚合物
细胞培养
作者
James Paoloni,Miriam Jackson,Elvis Pandžić,Md. Shariful Alam,Erik Meijering,Jonathan Yeow,Megan S. Lord
出处
期刊:Small
[Wiley]
日期:2025-12-30
卷期号:: e14076-e14076
标识
DOI:10.1002/smll.202514076
摘要
ABSTRACT Understanding how nanoparticle physicochemical properties influence cellular interactions is critical for optimizing drug delivery systems. Here, we report the high‐throughput synthesis and biological characterization of a 42‐member library of self‐assembled polymeric nanoparticles that systematically vary in hydrodynamic diameter and surface charge. Using reversible addition‐fragmentation chain‐transfer (RAFT) polymerization and polymerization‐induced self‐assembly (PISA), nanoparticles were synthesized in microplate formats and characterized for cytotoxicity and uptake by endothelial cells expressing either immature or mature glycocalyces. We found that surface charge had a greater impact on cytotoxicity and cellular uptake than hydrodynamic diameter, with some cationic nanoparticles exhibiting higher toxicity and uptake. Notably, cells with a mature glycocalyx showed increased tolerance and uptake of cationic nanoparticles, suggesting a protective and regulatory role of the glycocalyx. A semi‐automated imaging workflow incorporating machine learning‐based cell segmentation enabled single‐cell quantification of nanoparticle uptake, revealing population‐level variability across the library. Protein corona formation in serum conditions further modulated nanoparticle surface charge and interactions. This study highlights the importance of integrating nanoparticle design with biological context and scalable analytical tools, offering a framework for optimizing nanoparticle formulations for targeted delivery across diverse cell types.
科研通智能强力驱动
Strongly Powered by AbleSci AI