析氧
材料科学
分解水
电解水
电解
覆盖层
碱性水电解
化学工程
催化作用
氮化物
合理设计
镍
异质结
无机化学
磷化物
制氢
氢
纳米技术
电极
导电体
氧气
磷烯
极化(电化学)
氧化还原
联轴节(管道)
电流密度
碱金属
作者
Maria S. Metaxa,Ioannis Vamvasakis,Gerasimos S. Armatas
出处
期刊:Small
[Wiley]
日期:2025-12-26
卷期号:: e13136-e13136
标识
DOI:10.1002/smll.202513136
摘要
ABSTRACT The rational design of earth‐abundant electrocatalysts is pivotal for advancing alkaline water electrolysis toward sustainable hydrogen production. Here, we report a hierarchical FeOOH@Ni 3 N heterostructure comprising a redox‐active iron oxyhydroxide overlayer conformally coupled with a conductive trinickel nitride core directly grown on nickel foam. This hybrid catalyst drives the oxygen evolution reaction (OER) with ultralow overpotentials of 209, 245, and 284 mV at 10, 100, and 500 mA cm −2 , respectively, while maintaining exceptional stability under industrial‐level operations. Integrated into a two‐electrode electrolyzer, FeOOH@Ni 3 N achieves current densities of 10, 500, and 1000 mA cm −2 at cell voltages of only 1.49, 1.72, and 1.78 V, outperforming noble‐metal‐based benchmarks. Operando/in‐situ spectroscopies, combined with electrokinetic and isotope‐effect analyses, reveal that enhanced intrinsic activity originates from reconstructed proton–electron transfer pathways at the Fe–Ni heterointerface. Strong interfacial coupling stabilizes high‐valent Ni 4+ = O/,Fe 4+ = O species and promotes an unconventional dual‐site hydroxyl nucleophilic attack mechanism, wherein OH − attack on Fe 4+ = O forms a bridging *OOH intermediate as the O─O bond‐forming step, synergistically assisted by adjacent Ni centers. These findings delineate a clear structure–activity–stability relationship for Fe–Ni heterostructures and showcase heterointerface engineering of conductive nitrides with oxyhydroxides as a scalable strategy for developing durable, high‐rate OER electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI