Prediction of compressive mechanical properties of three-dimensional mesoscopic aluminium foam based on deep learning method

材料科学 卷积神经网络 深度学习 介观物理学 有限元法 人工神经网络 金属泡沫 人工智能 复合材料 结构工程 计算机科学 工程类 物理 量子力学
作者
Weimin Zhuang,Enming Wang,Hailun Zhang
出处
期刊:Mechanics of Materials [Elsevier BV]
卷期号:182: 104684-104684 被引量:6
标识
DOI:10.1016/j.mechmat.2023.104684
摘要

To achieve efficient and accurate prediction of the mechanical properties of aluminium foam, this study proposes a deep learning-based mechanical property prediction framework. The aluminium foam modelling plug-in based on the Voronoi model is selected to establish a three-dimensional solid model of aluminium foam, and the voxelization method is utilized to transform the geometric model of aluminium foam into a voxel model that can be recognized by the neural network. The mechanical properties of aluminium foam are calculated by the finite element method, including the stress‒strain response, densification strain and plateau stress. A deep learning sample dataset containing the aluminium foam voxel model and mechanical properties is established. The deep learning model based on a three-dimensional convolutional neural network (3D-CNN) is trained to identify the mesostructure features of aluminium foam, and a high-precision mapping relationship between the mesostructure and the macroscale mechanical properties is established. The research results show that the deep learning model established in this research can efficiently and accurately predict the mechanical properties of aluminium foam. Compared with conventional prediction methods, the prediction method based on deep learning has more advantages in efficiency and accuracy, and is an effective alternative to numerical simulation. In addition, the mechanical property prediction framework is highly scalable, extending the application scope of deep learning in the field of materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
烟花应助upupup采纳,获得30
2秒前
3秒前
王火火发布了新的文献求助10
4秒前
4秒前
zz发布了新的文献求助10
5秒前
yuyu完成签到,获得积分10
6秒前
su发布了新的文献求助10
6秒前
小晚发布了新的文献求助10
7秒前
一一应助着急的雪冥采纳,获得10
7秒前
7秒前
朱艺发布了新的文献求助10
7秒前
wuyyuan完成签到,获得积分10
8秒前
王闪闪发布了新的文献求助10
8秒前
善学以致用应助wade采纳,获得10
9秒前
万能图书馆应助Medicovv采纳,获得30
9秒前
zho应助福明明采纳,获得10
9秒前
澹台灭明完成签到,获得积分10
10秒前
可达鸭发布了新的文献求助10
10秒前
洛尘完成签到,获得积分10
11秒前
11秒前
12秒前
香蕉谷芹完成签到,获得积分10
12秒前
12秒前
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
smart应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
SYLH应助你以为你是谁采纳,获得10
15秒前
t通应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
520发布了新的文献求助10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Inclusion and Democracy 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826082
求助须知:如何正确求助?哪些是违规求助? 3368453
关于积分的说明 10450707
捐赠科研通 3087929
什么是DOI,文献DOI怎么找? 1698855
邀请新用户注册赠送积分活动 817155
科研通“疑难数据库(出版商)”最低求助积分说明 770065