材料科学
兴奋剂
光电子学
单层
蓝宝石
成核
纳米技术
半导体
电子迁移率
外延
晶体管
薄脆饼
过渡金属
凝聚态物理
工程物理
光学
电气工程
电压
图层(电子)
工程类
物理
催化作用
有机化学
化学
激光器
生物化学
作者
Hui Li,Junbo Yang,Xiaohui Li,Quankun Luo,Mo Cheng,Feng Wang,Ruofan Du,Yuzhu Wang,Luying Song,Xia Wen,Yao Wen,Mengmeng Xiao,Lei Liao,Yanfeng Zhang,Jianping Shi,Jun He
标识
DOI:10.1002/adma.202211536
摘要
Epitaxial growth and controllable doping of wafer-scale atomically thin semiconductor single crystals are two central tasks to tackle the scaling challenge of transistors. Despite considerable efforts are devoted, addressing such crucial issues simultaneously under 2D confinement is yet to be realized. Here, an ingenious strategy to synthesize record-breaking 4 in. length Fe-doped transition-metal dichalcogenides (TMDCs) single crystals on industry-compatible c-plane sapphire without special miscut angle is designed. Atomically thin transistors with high electron mobility (≈146 cm2 V-1 s-1 ) and remarkable on/off current ratio (≈109 ) are fabricated based on 4 in. length Fe-MoS2 single crystals, due to the ultralow contact resistance (≈489 Ω µm). In-depth characterizations and theoretical calculations reveal that the introduction of Fe significantly decreases the formation energy of parallel steps on sapphire surfaces and contributes to the edge-nucleation of unidirectional alignment TMDCs domains (>99%). This work represents a substantial leap in terms of bridging synthesis and doping of wafer-scale 2D semiconductor single crystals, which should promote the further device downscaling and extension of Moore's law.
科研通智能强力驱动
Strongly Powered by AbleSci AI