Knowledge fusion and spatio-temporal modeling for dynamic bottleneck prediction in sustainable production processes

瓶颈 计算机科学 生产(经济) 融合 数据挖掘 人工智能 语言学 哲学 宏观经济学 嵌入式系统 经济
作者
Tao Wu,Jie Li,Jinsong Bao,Zhengkai Jin
出处
期刊:International Journal of Computer Integrated Manufacturing [Taylor & Francis]
卷期号:: 1-17 被引量:1
标识
DOI:10.1080/0951192x.2025.2457114
摘要

Sustainable production is for the manufacturing industry to improve production efficiency and reduce energy consumption. Production system complexities, which cause bottlenecks, greatly impact process efficiency. However, the challenge lies in effectively utilizing sustainable production process knowledge, which is often under-exploited, particularly when integrating this knowledge with knowledge graphs for production bottleneck prediction. To solve the problem, this study presents a method for dynamic bottleneck prediction by integrating knowledge graphs and spatio-temporal models, leveraging underused production process knowledge. Initially, developing a sustainable production process knowledge graph effectively captures correlations between workstation states and external factors at production bottlenecks. Subsequently, a knowledge cross-fertilization module merges this correlation knowledge with spatio-temporal features, enhancing bottleneck prediction accuracy and reliability. Therefore, it efficiently predicts each workstation's blockage and starvation, which has significance in identifying accurately future bottleneck workstations. A case study demonstrates that this method significantly reduces root-mean-square error by 7% to 42% in predicting overall system blockage and starvation metrics. Moreover, the mean-absolute-error of this method is within 4.5% over various time scales of 30,60,90, and 120 minutes. Furthermore, these results confirm that the method introduced holds considerable practical significance in precisely identifying future workstation bottlenecks, offering novel tools and insights for enhancing production efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Axs完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
11秒前
Lucas应助花生采纳,获得30
12秒前
13秒前
17秒前
泡泡茶壶o完成签到 ,获得积分10
19秒前
19秒前
guo完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助50
21秒前
S.S.N完成签到 ,获得积分10
24秒前
Zhahu完成签到 ,获得积分10
26秒前
花生发布了新的文献求助30
32秒前
熊二完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
38秒前
芒芒发paper完成签到 ,获得积分10
41秒前
mmm4完成签到 ,获得积分10
43秒前
殷勤的紫槐完成签到,获得积分0
44秒前
科研通AI5应助科研通管家采纳,获得30
45秒前
CipherSage应助科研通管家采纳,获得150
45秒前
科研通AI6应助科研通管家采纳,获得150
45秒前
leaolf应助科研通管家采纳,获得150
45秒前
赘婿应助科研通管家采纳,获得150
45秒前
科研通AI2S应助科研通管家采纳,获得30
45秒前
无花果应助科研通管家采纳,获得10
46秒前
46秒前
47秒前
Mic应助雪山飞龙采纳,获得10
47秒前
英俊小蚂蚁完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
59秒前
珊珊完成签到,获得积分10
1分钟前
冷cool完成签到 ,获得积分10
1分钟前
从容的水壶完成签到 ,获得积分10
1分钟前
xxm完成签到 ,获得积分10
1分钟前
Mic应助雪山飞龙采纳,获得10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
kk完成签到,获得积分10
1分钟前
whuhustwit完成签到,获得积分10
1分钟前
zw完成签到 ,获得积分10
1分钟前
mcquery完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139051
求助须知:如何正确求助?哪些是违规求助? 4338158
关于积分的说明 13512361
捐赠科研通 4177287
什么是DOI,文献DOI怎么找? 2290713
邀请新用户注册赠送积分活动 1291220
关于科研通互助平台的介绍 1233333