亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate and Efficient Algorithm for Detection of Alzheimer Disability Based on Deep Learning

计算机科学 人工智能 卷积神经网络 计算机辅助设计 机器学习 深度学习 特征提取 支持向量机 模式识别(心理学) 工程制图 工程类
作者
Fayez Alfayez,S. Rozov,Mohamed S. El Tokhy
出处
期刊:Cellular Physiology and Biochemistry [Karger Publishers]
卷期号:58 (6): 739-755
标识
DOI:10.33594/000000746
摘要

Background/Aims: Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that severely affects cognitive functions and memory. Early detection is crucial for timely intervention and improved patient outcomes. However, traditional diagnostic tools, such as MRI and PET scans, are costly and less accessible. This study aims to develop an automated, cost-effective digital diagnostic approach using deep learning (DL) and computer-aided detection (CAD) methods for early AD identification and classification. Methods: The proposed framework utilizes pretrained convolutional neural networks (CNNs) for feature extraction, integrated with two classifiers: multi-class support vector machine (MSVM) and artificial neural network (ANN). A dataset categorized into four groups—non-demented, very mild demented, mild demented, and moderate demented—was employed for evaluation. To optimize the classification process, a texture-based algorithm was applied for feature reduction, enhancing computational efficiency and reducing processing time. Results: The system demonstrated high statistical performance, achieving an accuracy of 91%, precision of 95%, and recall of 90%. Among the initial set of twenty-two texture features, seven were identified as particularly effective in differentiating normal cases from mild AD stages, significantly streamlining the classification process. These results validate the robustness and efficacy of the proposed DL-based CAD system. Conclusion: This study presents a reliable and affordable solution for early AD detection and diagnosis. The proposed system outperforms existing state-of-the-art models and offers a valuable tool for timely treatment planning. Future research should explore its application to larger, more diverse datasets and investigate integration with other imaging modalities, such as MRI, to further enhance diagnostic precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Swilder完成签到 ,获得积分10
3秒前
思源应助1461644768采纳,获得10
7秒前
张铭完成签到,获得积分10
12秒前
爹爹发布了新的文献求助20
14秒前
18秒前
浅晨发布了新的文献求助10
24秒前
32秒前
博弈春秋发布了新的文献求助10
36秒前
41秒前
NexusExplorer应助哈鲁采纳,获得10
45秒前
尹汉通完成签到,获得积分10
51秒前
xiawanren00完成签到,获得积分10
57秒前
寰2023完成签到,获得积分10
58秒前
感谢有你完成签到 ,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
花陵完成签到 ,获得积分10
1分钟前
Leofar完成签到 ,获得积分10
1分钟前
耍酷的梦桃完成签到,获得积分10
1分钟前
研友_VZG7GZ应助大雄先生采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
大雄先生发布了新的文献求助10
1分钟前
1分钟前
1分钟前
linjane发布了新的文献求助10
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1461644768发布了新的文献求助10
1分钟前
科研通AI2S应助豆本豆采纳,获得10
2分钟前
Ortho完成签到 ,获得积分10
2分钟前
Lucas应助小琦笨蛋采纳,获得10
2分钟前
小宋爱睡觉完成签到 ,获得积分10
2分钟前
欢呼的初彤完成签到 ,获得积分10
2分钟前
顺心寄文完成签到 ,获得积分10
2分钟前
orixero应助WJY采纳,获得30
2分钟前
特特雷珀萨努完成签到 ,获得积分10
2分钟前
虚心谷梦完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916561
求助须知:如何正确求助?哪些是违规求助? 3462008
关于积分的说明 10920329
捐赠科研通 3189405
什么是DOI,文献DOI怎么找? 1762970
邀请新用户注册赠送积分活动 853194
科研通“疑难数据库(出版商)”最低求助积分说明 793732