AI predicting recurrence in non-muscle-invasive bladder cancer: systematic review with study strengths and weaknesses

膀胱癌 优势和劣势 医学 肿瘤科 癌症 内科学 病理 心理学 社会心理学
作者
Saram Abbas,Rishad Shafik,Naeem Soomro,Rakesh Heer,Kabita Adhikari
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1509362
摘要

Non-muscle-invasive Bladder Cancer (NMIBC) is notorious for its high recurrence rate of 70-80%, imposing a significant human burden and making it one of the costliest cancers to manage. Current prediction tools for NMIBC recurrence rely on scoring systems that often overestimate risk and lack accuracy. Machine learning (ML) and artificial intelligence (AI) are transforming oncological urology by leveraging molecular and clinical data to enhance predictive precision. This comprehensive review critically examines ML-based frameworks for predicting NMIBC recurrence. A systematic literature search was conducted, focusing on the statistical robustness and algorithmic efficacy of studies. These were categorised by data modalities (e.g., radiomics, clinical, histopathological, genomic) and types of ML models, such as neural networks, deep learning, and random forests. Each study was analysed for strengths, weaknesses, performance metrics, and limitations, with emphasis on generalisability, interpretability, and cost-effectiveness. ML algorithms demonstrate significant potential, with neural networks achieving accuracies of 65-97.5%, particularly with multi-modal datasets, and support vector machines averaging around 75%. Models combining multiple data types consistently outperformed single-modality approaches. However, challenges include limited generalisability due to small datasets and the "black-box" nature of advanced models. Efforts to enhance explainability, such as SHapley Additive ExPlanations (SHAP), show promise but require refinement for clinical use. This review illuminates the nuances, complexities and contexts that influence the real-world advancement and adoption of these AI-driven techniques in precision oncology. It equips researchers with a deeper understanding of the intricacies of the ML algorithms employed. Actionable insights are provided for refining algorithms, optimising multimodal data utilisation, and bridging the gap between predictive accuracy and clinical utility. This rigorous analysis serves as a roadmap to advance real-world AI applications in oncological care, highlighting the collaborative efforts and robust datasets necessary to translate these advancements into tangible benefits for patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
全球发布了新的文献求助10
刚刚
悲凉的烨华完成签到,获得积分20
刚刚
刚刚
1秒前
ZYC发布了新的文献求助10
2秒前
2秒前
碳酸芙兰发布了新的文献求助10
2秒前
xxme77发布了新的文献求助10
3秒前
自强不息发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
赘婿应助蔡奕瑾采纳,获得30
4秒前
务实的罡完成签到,获得积分10
4秒前
fangqian0000发布了新的文献求助10
5秒前
CKK发布了新的文献求助10
5秒前
5秒前
科研通AI5应助boshi采纳,获得10
5秒前
5秒前
6秒前
6秒前
文聪发布了新的文献求助10
7秒前
coolkid应助粥粥爱糊糊采纳,获得20
7秒前
7秒前
7秒前
上汤PJ发布了新的文献求助10
7秒前
lieditongxu发布了新的文献求助10
8秒前
tyh完成签到,获得积分10
8秒前
10秒前
小浣熊完成签到,获得积分10
10秒前
wanci应助guozizi采纳,获得100
11秒前
大辉发布了新的文献求助10
11秒前
dd发布了新的文献求助10
11秒前
11秒前
施不评发布了新的文献求助10
12秒前
斯内克发布了新的文献求助10
12秒前
demmeretock发布了新的文献求助10
12秒前
果果完成签到,获得积分10
12秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226