Enhancing smart home environments: a novel pattern recognition approach to ambient acoustic event detection and localization

计算机科学 均方误差 事件(粒子物理) 环境噪声级 随机森林 线性判别分析 频域 时域 家庭自动化 人工智能 语音识别 模式识别(心理学) 实时计算 计算机视觉 声音(地理) 数学 电信 声学 统计 量子力学 物理
作者
Ahsan Shabbir,Abdul Haleem Butt,Taha Khan,Lorenzo Chiari,Ahmad Almadhor,Vincent Karovič
出处
期刊:Frontiers in big data [Frontiers Media SA]
卷期号:7: 1419562-1419562 被引量:4
标识
DOI:10.3389/fdata.2024.1419562
摘要

Introduction Ambient acoustic detection and localization play a vital role in identifying events and their origins from acoustic data. This study aimed to establish a comprehensive framework for classifying activities in home environments to detect emergency events and transmit emergency signals. Localization enhances the detection of the acoustic event's location, thereby improving the effectiveness of emergency services, situational awareness, and response times. Methods Acoustic data were collected from a home environment using six strategically placed microphones in a bedroom, kitchen, restroom, and corridor. A total of 512 audio samples were recorded from 11 activities. Background noise was eliminated using a filtering technique. State-of-the-art features were extracted from the time domain, frequency domain, time frequency domain, and cepstral domain to develop efficient detection and localization frameworks. Random forest and linear discriminant analysis classifiers were employed for event detection, while the estimation signal parameters through rational-in-variance techniques (ESPRIT) algorithm was used for sound source localization. Results The study achieved high detection accuracy, with random forest and linear discriminant analysis classifiers attaining 95% and 87%, respectively, for event detection. For sound source localization, the proposed framework demonstrated significant performance, with an error rate of 3.61, a mean squared error (MSE) of 14.98, and a root mean squared error (RMSE) of 3.87. Discussion The integration of detection and localization models facilitated the identification of emergency activities and the transmission of notifications via electronic mail. The results highlight the potential of the proposed methodology to develop a real-time emergency alert system for domestic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助皮蛋采纳,获得10
刚刚
南初完成签到,获得积分10
刚刚
KinoFreeze完成签到 ,获得积分10
1秒前
yutingting发布了新的文献求助10
3秒前
4秒前
5秒前
WW完成签到,获得积分10
6秒前
薇w发布了新的文献求助10
6秒前
斯文败类应助一切顺利采纳,获得10
7秒前
旺大财完成签到,获得积分10
7秒前
AN发布了新的文献求助30
7秒前
loof11关注了科研通微信公众号
8秒前
guan完成签到,获得积分10
8秒前
9秒前
9秒前
漂流的飞星完成签到,获得积分10
10秒前
啧啧啧发布了新的文献求助10
10秒前
彩色蓉应助Dotuu采纳,获得10
10秒前
xkk完成签到,获得积分10
10秒前
10秒前
11秒前
yaoli0823发布了新的文献求助10
11秒前
Y橙子发布了新的文献求助10
12秒前
hsy完成签到,获得积分10
12秒前
13秒前
一切顺利完成签到,获得积分10
13秒前
科研通AI2S应助浅呀呀呀采纳,获得10
13秒前
13秒前
李小颜发布了新的文献求助10
13秒前
无名氏发布了新的文献求助10
14秒前
15秒前
16秒前
苗条的小之完成签到,获得积分10
16秒前
ccchengzi完成签到,获得积分10
16秒前
我是老大应助朱子怡采纳,获得10
17秒前
冷傲的薯片完成签到 ,获得积分10
17秒前
一个火蓉果啊完成签到,获得积分10
17秒前
小二郎应助Camellia采纳,获得10
17秒前
乐观黎云发布了新的文献求助30
18秒前
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453804
求助须知:如何正确求助?哪些是违规求助? 4561313
关于积分的说明 14282182
捐赠科研通 4485290
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447348
关于科研通互助平台的介绍 1422701