A wavelet-LSTM model for short-term wind power forecasting using wind farm SCADA data

SCADA系统 风力发电 计算机科学 期限(时间) 实时计算 电力系统 小波 风电预测 小波变换 功率(物理) 数据挖掘 人工智能 工程类 电气工程 物理 量子力学
作者
Zhaohua Liu,Chang-Tong Wang,Hua‐Liang Wei,Bing Zeng,Ming Li,Xiao‐Ping Song
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:247: 123237-123237 被引量:16
标识
DOI:10.1016/j.eswa.2024.123237
摘要

Supervisory Control and Data Acquisition (SCADA) system collects massive operation and environment information which directly or indirectly affects the output power in wind farms. Therefore, it becomes an imperious demand to analyze the underlying information from SCADA data for improving the performance of short-term wind power prediction. In this paper, an effective deep learning framework for short-term wind power forecasting based on SCADA data analysis is proposed. A data denoising scheme is designed based on wavelet decomposition. In this method, all SCADA signals (except the wind power signal itself) are decomposed into low-frequency component A and high-frequency component D respectively by the wavelet transform. Then, the maximum information coefficient (MIC) method is applied to choose features that have strong correlation with wind power. Finally, all the selected features and wind power are defined as input vector that are used to train long short-term memory networks. The simulation results based on real data extracted from a SCADA system installed in wind farm indicate that the designed deep learning framework can significantly improve the accuracy of short-term wind power prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao应助xm采纳,获得10
刚刚
纵使千千晚星完成签到,获得积分10
刚刚
叫滚滚发布了新的文献求助10
刚刚
顾矜应助莫愁采纳,获得10
1秒前
怕孤单的寒天完成签到,获得积分10
1秒前
985博士完成签到,获得积分20
1秒前
研友_nPkl9L发布了新的文献求助10
2秒前
Vincent发布了新的文献求助10
2秒前
Faine完成签到 ,获得积分10
2秒前
pcr163应助叶子采纳,获得30
2秒前
漂亮飞凤发布了新的文献求助10
2秒前
4秒前
ranlan完成签到,获得积分10
4秒前
谦让小玉完成签到 ,获得积分10
4秒前
邓佳鑫Alan发布了新的文献求助10
4秒前
Spinnin完成签到,获得积分10
4秒前
lennon完成签到,获得积分10
4秒前
科研通AI5应助wenqing采纳,获得10
5秒前
5秒前
Luckqi6688完成签到,获得积分10
5秒前
揽月yue应助prophage采纳,获得10
5秒前
领导范儿应助漂亮飞凤采纳,获得10
6秒前
6秒前
斯文败类应助勾勾采纳,获得10
6秒前
Rlx完成签到,获得积分10
6秒前
SYLH应助绿色的泥巴采纳,获得10
6秒前
xy完成签到,获得积分10
7秒前
烯灯完成签到,获得积分10
7秒前
科研通AI5应助有魅力绿真采纳,获得10
7秒前
7秒前
Cherry完成签到,获得积分10
7秒前
JamesPei应助勤劳母鸡采纳,获得10
8秒前
9秒前
李爱国应助wongtinlun采纳,获得10
9秒前
跳跃的惮发布了新的文献求助10
11秒前
11秒前
研友_89mvO8完成签到,获得积分10
11秒前
大黑眼圈完成签到 ,获得积分10
12秒前
snail01完成签到,获得积分10
12秒前
传奇3应助ning采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812073
求助须知:如何正确求助?哪些是违规求助? 3356517
关于积分的说明 10382273
捐赠科研通 3073630
什么是DOI,文献DOI怎么找? 1688345
邀请新用户注册赠送积分活动 812103
科研通“疑难数据库(出版商)”最低求助积分说明 766947