Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data

医学 食管鳞状细胞癌 组学 基底细胞 放射治疗 肿瘤科 内科学 放化疗 生物信息学 生物
作者
Zhi‐Mao Li,Wei Liu,Xu-Li Chen,Wenzhi Wu,Xiu‐E Xu,Man-Yu Chu,Shuai-Xia Yu,En‐Min Li,He-Cheng Huang,Li‐Yan Xu
出处
期刊:Clinics and Research in Hepatology and Gastroenterology [Elsevier BV]
卷期号:48 (4): 102318-102318 被引量:4
标识
DOI:10.1016/j.clinre.2024.102318
摘要

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
协和小飞龙完成签到,获得积分10
1秒前
还行发布了新的文献求助10
1秒前
嗯嗯发布了新的文献求助30
2秒前
3秒前
3秒前
将1发布了新的文献求助10
3秒前
领导范儿应助aa121599采纳,获得10
4秒前
森sen完成签到 ,获得积分10
5秒前
liyi完成签到,获得积分10
6秒前
6秒前
6秒前
湖以完成签到 ,获得积分10
7秒前
cjxxjc729发布了新的文献求助10
7秒前
Owen应助dfghj采纳,获得10
8秒前
殷勤的凝海完成签到 ,获得积分10
9秒前
将1完成签到,获得积分20
10秒前
乐乐应助十个qin天采纳,获得10
10秒前
顺心香菇应助嗯嗯采纳,获得80
11秒前
桐桐应助rcrc111采纳,获得10
11秒前
独特涔雨发布了新的文献求助10
11秒前
11秒前
14秒前
公孙世往发布了新的文献求助10
16秒前
17秒前
18秒前
科研通AI5应助yan采纳,获得10
19秒前
20秒前
22秒前
烟花应助我不是阿呆采纳,获得10
22秒前
dfghj发布了新的文献求助10
23秒前
25秒前
26秒前
27秒前
27秒前
28秒前
28秒前
xuanhaha发布了新的文献求助10
29秒前
孤独的芒果完成签到,获得积分10
29秒前
彭凯发布了新的文献求助10
30秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776959
求助须知:如何正确求助?哪些是违规求助? 3322349
关于积分的说明 10209964
捐赠科研通 3037710
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797676
科研通“疑难数据库(出版商)”最低求助积分说明 758003