EATDer: Edge-Assisted Adaptive Transformer Detector for Remote Sensing Change Detection

计算机科学 人工智能 编码器 卷积神经网络 变压器 探测器 计算机视觉 目标检测 模式识别(心理学) 电信 电压 物理 量子力学 操作系统
作者
Jingjing Ma,Junyi Duan,Xu Tang,Xiangrong Zhang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:57
标识
DOI:10.1109/tgrs.2023.3344083
摘要

Change detection (CD) is one of the important research topics in remote sensing (RS) image processing. Recently, convolutional neural networks (CNNs) have dominated the RSCD community. Many successful CNN-based models have been proposed, and they achieved cracking performance. Nevertheless, influenced by the limited receptive field, the CNN-based models are not good at capturing long-distance context dependencies within RS images, negatively impacting their performance. With the appearance of the visual transformer, the above problems have been mitigated. However, the high time costs of the transformer-based models limit their applicability. In addition, previous CD networks (whether CNN-based or transform-based) do not pay attention to the edges of changed areas, reducing the quality of change maps. To overcome the shortcomings discussed above, we propose a new CD method named edge-assisted adaptive transformer detector (EATDer). EATDer consists of a Siamese encoder and an edge-aware decoder. Each branch in the Siamese encoder encloses three self-adaption vision transformer (SAVT) blocks, which aim to capture the local and global information within RS images. Also, two branches are connected by full-range fusion modules (FRFMs), which focus on mining the temporal clues among bi-temporal RS images and pointing out the changed/unchanged messages. The edge-aware decoder first integrates the multiscale features obtained by the encoder using a restoring block. Then, it enhances the combined features by a refining block. Finally, based on the refined features, both the change and edge detection results can be produced. Along with a joint loss function, we can get high-quality change maps in which the changed areas are correct and have clear and smooth edges. The usefulness of our EATDer is validated by extensive experiments conducted on three popular RSCD datasets. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Image-Change-Detection/tree/main/EATDer
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YT完成签到,获得积分10
1秒前
无花果应助bella采纳,获得10
2秒前
2秒前
toutou应助青峰采纳,获得10
2秒前
濮阳冰海完成签到 ,获得积分10
2秒前
2秒前
Geist完成签到,获得积分10
3秒前
领导范儿应助可靠诗筠采纳,获得10
4秒前
ly完成签到 ,获得积分10
4秒前
情怀应助俭朴的世界采纳,获得10
4秒前
张强完成签到,获得积分10
5秒前
Jasper应助丸子采纳,获得10
5秒前
5秒前
英姑应助文泽采纳,获得10
6秒前
灿灿完成签到,获得积分20
6秒前
孤独代亦完成签到,获得积分10
7秒前
zzzz发布了新的文献求助10
8秒前
8秒前
李健的小迷弟应助Superxx采纳,获得10
8秒前
toutou应助青峰采纳,获得10
9秒前
OisinLi应助完美夜云采纳,获得20
10秒前
量子星尘发布了新的文献求助10
10秒前
RenYT发布了新的文献求助10
12秒前
12秒前
13秒前
苹果完成签到,获得积分20
14秒前
bella发布了新的文献求助10
16秒前
马晓武完成签到,获得积分10
16秒前
17秒前
toutou应助青峰采纳,获得10
17秒前
谷粱靖完成签到,获得积分10
18秒前
木槿关注了科研通微信公众号
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
bgt发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761461
求助须知:如何正确求助?哪些是违规求助? 5529957
关于积分的说明 15399736
捐赠科研通 4897879
什么是DOI,文献DOI怎么找? 2634552
邀请新用户注册赠送积分活动 1582678
关于科研通互助平台的介绍 1537927