材料科学
代表性基本卷
平纹织物
微观力学
复合材料
断裂(地质)
损伤力学
流离失所(心理学)
结构工程
有限元法
复合数
微观结构
工程类
心理学
纱线
心理治疗师
作者
Amir Mohammad Ghanavaty,Reza Mosalmani,Mohammad Shishesaz
标识
DOI:10.1177/00219983231218783
摘要
This study introduces an analytical micromechanical model considering progressive damage designed to predict the elastic and strength properties of plain weave composites subjected to fatigue loading. The presented model is composed of a multi-scale micromechanical model, wherein a progressive damage mechanism has been incorporated. During the development of this multi-scale micromechanical model, a representative volume element was chosen and homogenized, utilizing assumptions pertaining to identical out-of-plane stresses and in-plane strains. These assumptions satisfy the conditions of equilibrium and displacement continuity in the representative volume element and, through a three-step process, enhance the model’s accuracy in applying the damage model and predicting the elastic properties of plain weave composites under static loading. Subsequently, the damage mechanism was progressively developed by accounting for the crucial role of matrix crack growth. This was achieved by employing the kinetic theory of fracture for polymers and integrating it with the multi-scale micromechanical model. Ultimately, the elastic and strength properties of plain weave composites under fatigue loading were predicted. A comparison of the results derived from the present model with those available in the literature demonstrated a high degree of agreement.
科研通智能强力驱动
Strongly Powered by AbleSci AI