BatOpt: Optimizing GPU-Based Deep Learning Inference Using Dynamic Batch Processing

计算机科学 图形处理单元的通用计算 推论 图形处理单元 深度学习 云计算 人工智能 并行计算 操作系统 计算机图形学(图像) 绘图
作者
Deyu Zhang,Yunzhen Luo,Yaobo Wang,Xiaoyan Kui,Ju Ren
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 174-185 被引量:2
标识
DOI:10.1109/tcc.2024.3350561
摘要

Deep learning (DL) has been applied in billions of mobile devices due to its astonishing performance in image, text, and audio processing. However, limited by the computing capability of mobile devices, a large amount of DL inference tasks need to be offloaded to edge or cloud servers, which makes powerful GPU servers are struggling to ensure the quality of service(QoS). To better utilize the highly parallel computing architecture of GPU to improve the QoS, we propose BatOpt, a framework that uses dynamic batch processing to strike a good balance between service latency and GPU memory usage in DL inference services. Specifically, BatOpt innovatively models the DL inference service as a $M/G(a,b)/1/N$ queue, with the consideration of stochastic task arrivals, which enables it to predict the service latency accurately in different system states. Furthermore, we propose an optimization algorithm to trade off the service latency and GPU memory usage in different system states by analyzing the queueing model. We have implemented BatOpt on Pytorch and evaluated it on an RTX 2080 GPU using real DL models. BatOpt brings up to 31x and 4.3x times performance boost in terms of service latency, compared to single-input and fixed-batch-size strategies, respectively. And BatOpt's maximum GPU memory usage is only 0.3x that of greedy-dynamic-batch-size strategy on the premise of the same service latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
able应助科研通管家采纳,获得30
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得30
1秒前
和谐的芷天完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
小韩同学完成签到,获得积分10
1秒前
ly关闭了ly文献求助
2秒前
2秒前
la完成签到,获得积分10
2秒前
3秒前
难过白易完成签到,获得积分10
3秒前
3秒前
林白完成签到,获得积分10
4秒前
tracer526完成签到,获得积分10
4秒前
锡嘻完成签到,获得积分10
4秒前
lyyy完成签到,获得积分10
4秒前
叶郅晟发布了新的文献求助10
4秒前
英俊的铭应助uvofuofy采纳,获得10
5秒前
乐乐应助Husky采纳,获得10
5秒前
liiii关注了科研通微信公众号
5秒前
国家栋梁发布了新的文献求助20
6秒前
6秒前
凉生发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352476
求助须知:如何正确求助?哪些是违规求助? 4485321
关于积分的说明 13962707
捐赠科研通 4385239
什么是DOI,文献DOI怎么找? 2409332
邀请新用户注册赠送积分活动 1401777
关于科研通互助平台的介绍 1375357