Ultra-short-term wind power probabilistic forecasting based on an evolutionary non-crossing multi-output quantile regression deep neural network

分位数回归 分位数 人工神经网络 梯度下降 计算机科学 人工智能 深度学习 机器学习 数学 计量经济学
作者
Jianhua Zhu,Yaoyao He,Haibo He,Shanlin Yang
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:301: 118062-118062 被引量:6
标识
DOI:10.1016/j.enconman.2024.118062
摘要

Ultra-short-term wind power probabilistic forecasting is of significance for stable power grid operation; however, it is still challenging due to the inherent nonlinearity and uncertainty. Most state-of-the-art methods have focused on achieving quantile prediction using a combination of linear quantile regression and nonlinear complex deep neural networks. Yet, these methods struggle with several dilemmas. Quantile regression deep neural networks require a complete training once for each quantile. The multi-training mode and complex structure of quantile regression deep neural network can lead to extremely high computational complexity. Most of the training of quantile regression deep neural networks are guided by the loss of each quantile, and the weights are adjusted by gradient descent in which the gradient explosion and quantile crossover may be encountered. Therefore, this paper proposes a non-crossing multi-output quantile regression deep neural network optimized by chaotic particle swarm optimization. It designs a multi-output deep neural network to output all quantile estimations simultaneously through one training, effectively solving the structural complexity problem of traditional quantile regression deep neural networks. Since quantile regression produces a non-differentiable loss function which significantly hinders model training, the proposed neural network is trained by chaotic particle swarm optimization. It not only achieves the effect of optimizing all quantile losses simultaneously, but also can significantly alleviate the dilemma of training in traditional neural network weight optimization. In addition, several non-crossing constraints are designed for avoiding quantile crossover. The proposed model is trained and tested on two real-world wind power case studies. The experiment results show that the proposed model shows superiority in performance criteria, training speed, and avoiding quantile crossover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xshlzwyyh完成签到,获得积分10
刚刚
烟花应助乔乔汀采纳,获得10
1秒前
外向访卉发布了新的文献求助10
1秒前
1秒前
3秒前
heli发布了新的文献求助10
3秒前
科研通AI2S应助adsf采纳,获得10
4秒前
4秒前
枫16完成签到,获得积分10
5秒前
所所应助幸符采纳,获得30
9秒前
疯狂的娃哈哈完成签到 ,获得积分10
9秒前
10秒前
积极天思完成签到 ,获得积分10
13秒前
陈住气发布了新的文献求助10
13秒前
情怀应助慧敏采纳,获得10
13秒前
丘比特应助外向访卉采纳,获得10
14秒前
在水一方应助无私的夕阳采纳,获得10
14秒前
唐卟哩钵完成签到,获得积分10
17秒前
18秒前
theverve完成签到,获得积分10
18秒前
骄阳似我发布了新的文献求助10
20秒前
包容的世倌完成签到 ,获得积分10
21秒前
22秒前
乔乔汀发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
Bob2完成签到,获得积分10
27秒前
AeroY发布了新的文献求助10
27秒前
歇儿哒哒完成签到,获得积分10
28秒前
29秒前
29秒前
无私的夕阳完成签到,获得积分20
30秒前
30秒前
wanci应助杨佳晨采纳,获得10
31秒前
科研通AI5应助贾舒涵采纳,获得50
32秒前
32秒前
陈功完成签到,获得积分10
32秒前
梦想or现实完成签到,获得积分10
33秒前
33秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382171
关于积分的说明 10521705
捐赠科研通 3101645
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822311
科研通“疑难数据库(出版商)”最低求助积分说明 773235