Deep learning-based low overlap point cloud registration for complex scenario: The review

点云 计算机科学 构造(python库) 深度学习 人工智能 点(几何) 云计算 机器学习 数据科学 数据挖掘 几何学 数学 操作系统 程序设计语言
作者
Yuehua Zhao,Jiguang Zhang,Shibiao Xu,Jie Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102305-102305 被引量:3
标识
DOI:10.1016/j.inffus.2024.102305
摘要

Most studies on point cloud registration have established the problem in the case of ideal point cloud data. Although the state-of-the-art approaches have achieved amazing results on multiple public datasets, the issue of low overlap point cloud data invalidating state-of-the-art methods is acting as a latent challenge that has not been solved. Therefore, a profound analysis about why existing registration architectures break down in the low-overlap regime and how to select the appropriate strategies to improve the low overlap point cloud correspondence estimation is necessary and useful. Unfortunately, there are few survey works about low overlap cloud registration solving strategies and the corresponding datasets are very limited. This work briefly reviews mainstream deep learning-based point cloud registration and provides an in-depth analysis of the reasons why these architectures are not generalizable to scenarios with low overlapping areas. It is the first survey that mainly focuses on representative low overlap registration methods, their techniques, and related datasets for training/testing. It is worth noting that we also design and construct a large 3D dataset to eliminate the gap in Semantic-assisted point cloud registration with low overlap. Finally, challenges about low overlap point cloud registration and future directions in addressing these challenges are also pointed out.[dataset]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李浩发布了新的文献求助10
刚刚
笨笨芯完成签到,获得积分10
刚刚
linmu完成签到 ,获得积分10
1秒前
关尔匕禾页完成签到,获得积分10
5秒前
6秒前
彭于晏应助孤独机器猫采纳,获得10
6秒前
9秒前
9秒前
大模型应助科研长颈鹿采纳,获得10
10秒前
12秒前
llllxj完成签到,获得积分20
14秒前
17秒前
HJJHJH发布了新的文献求助10
17秒前
19秒前
20秒前
fff完成签到 ,获得积分10
23秒前
tsukinineko完成签到,获得积分10
24秒前
深情安青应助TT2022采纳,获得10
24秒前
追寻啤酒发布了新的文献求助10
25秒前
午见千山应助手抓饼啊采纳,获得30
25秒前
大个应助小不采纳,获得10
27秒前
kiki完成签到 ,获得积分10
28秒前
31秒前
小粒橙完成签到 ,获得积分10
32秒前
tsukinineko发布了新的文献求助10
33秒前
34秒前
卿君完成签到,获得积分10
34秒前
35秒前
大个应助Master采纳,获得10
36秒前
ZZ发布了新的文献求助10
36秒前
40秒前
矮小的向雪完成签到 ,获得积分10
40秒前
aasd7jkl发布了新的文献求助10
40秒前
42秒前
隔壁巷子里的劉完成签到 ,获得积分10
42秒前
金金发布了新的文献求助10
43秒前
43秒前
研友_VZG7GZ应助ningmeng采纳,获得10
47秒前
47秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751