Deep learning-based low overlap point cloud registration for complex scenario: The review

点云 计算机科学 构造(python库) 深度学习 人工智能 点(几何) 云计算 机器学习 数据科学 数据挖掘 几何学 数学 操作系统 程序设计语言
作者
Yuehua Zhao,Jiguang Zhang,Shibiao Xu,Jie Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102305-102305 被引量:4
标识
DOI:10.1016/j.inffus.2024.102305
摘要

Most studies on point cloud registration have established the problem in the case of ideal point cloud data. Although the state-of-the-art approaches have achieved amazing results on multiple public datasets, the issue of low overlap point cloud data invalidating state-of-the-art methods is acting as a latent challenge that has not been solved. Therefore, a profound analysis about why existing registration architectures break down in the low-overlap regime and how to select the appropriate strategies to improve the low overlap point cloud correspondence estimation is necessary and useful. Unfortunately, there are few survey works about low overlap cloud registration solving strategies and the corresponding datasets are very limited. This work briefly reviews mainstream deep learning-based point cloud registration and provides an in-depth analysis of the reasons why these architectures are not generalizable to scenarios with low overlapping areas. It is the first survey that mainly focuses on representative low overlap registration methods, their techniques, and related datasets for training/testing. It is worth noting that we also design and construct a large 3D dataset to eliminate the gap in Semantic-assisted point cloud registration with low overlap. Finally, challenges about low overlap point cloud registration and future directions in addressing these challenges are also pointed out.[dataset]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助阳生采纳,获得10
刚刚
1秒前
秦兴虎完成签到,获得积分10
1秒前
LYB吕完成签到,获得积分10
1秒前
大花猫发布了新的文献求助20
2秒前
斯文败类应助十六采纳,获得10
2秒前
3秒前
HBY发布了新的文献求助10
3秒前
Arisqotle完成签到,获得积分10
5秒前
5秒前
真源莫方完成签到,获得积分10
6秒前
阳光怀亦发布了新的文献求助10
6秒前
smottom应助轩辕沛柔采纳,获得10
6秒前
6秒前
7秒前
核桃应助江浙涵涵采纳,获得30
7秒前
9秒前
真源莫方发布了新的文献求助10
9秒前
smottom应助xiaowei采纳,获得20
9秒前
小杜完成签到 ,获得积分10
10秒前
song_song完成签到,获得积分10
10秒前
中和皇极应助hkh采纳,获得10
10秒前
10秒前
小二郎应助zhao采纳,获得10
11秒前
陈隆发布了新的文献求助10
13秒前
xuwb发布了新的文献求助10
13秒前
火星上的夜云完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
16秒前
17秒前
18秒前
Hello应助小狗同志006采纳,获得10
19秒前
123发布了新的文献求助10
19秒前
小鱼儿发布了新的文献求助10
19秒前
19秒前
大个应助陈隆采纳,获得10
19秒前
曼凡发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403