Metabolomic landscape of overall and common cancers in the UK Biobank: A prospective cohort study

代谢组学 癌症 生命银行 医学 代谢物 多元统计 多元分析 肿瘤科 队列 比例危险模型 前瞻性队列研究 内科学 Lasso(编程语言) 生物信息学 生物 万维网 统计 计算机科学 数学
作者
Chanchan Hu,Yi Fan,Zhifeng Lin,Xiaoxu Xie,Shaodan Huang,Zhijian Hu
出处
期刊:International Journal of Cancer [Wiley]
卷期号:155 (1): 27-39 被引量:1
标识
DOI:10.1002/ijc.34884
摘要

Abstract Information about the NMR metabolomics landscape of overall, and common cancers is still limited. Based on a cohort of 83,290 participants from the UK Biobank, we used multivariate Cox regression to assess the associations between each of the 168 metabolites with the risks of overall cancer and 20 specific types of cancer. Then, we applied LASSO to identify important metabolites for overall cancer risk and obtained their associations using multivariate cox regression. We further conducted mediation analysis to evaluate the mediated role of metabolites in the effects of traditional factors on overall cancer risk. Finally, we included the 13 identified metabolites as predictors in prediction models, and compared the accuracies of our traditional models. We found that there were commonalities among the metabolic profiles of overall and specific types of cancer: the top 20 frequently identified metabolites for 20 specific types of cancer were all associated with overall cancer; most of the specific types of cancer had common identified metabolites. Meanwhile, the associations between the same metabolite with different types of cancer can vary based on the site of origin. We identified 13 metabolic biomarkers associated with overall cancer, and found that they mediated the effects of traditional factors. The accuracies of prediction models improved when we added 13 identified metabolites in models. This study is helpful to understand the metabolic mechanisms of overall and a wide range of cancers, and our results also indicate that NMR metabolites are potential biomarkers in cancer diagnosis and prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2012xn发布了新的文献求助10
1秒前
1秒前
刘嘉玲完成签到,获得积分20
1秒前
3秒前
4秒前
6秒前
1525589136完成签到,获得积分10
6秒前
唐唐发布了新的文献求助10
6秒前
7秒前
yang完成签到,获得积分10
7秒前
wltwb发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
坚强水香发布了新的文献求助10
11秒前
上官若男应助称心的语梦采纳,获得10
11秒前
瓷儿发布了新的文献求助10
12秒前
13秒前
bkagyin应助认真生活采纳,获得10
13秒前
John发布了新的文献求助10
13秒前
丰富源智完成签到,获得积分10
13秒前
满眼星辰发布了新的文献求助10
14秒前
南鸢发布了新的文献求助10
16秒前
tian发布了新的文献求助10
16秒前
16秒前
17秒前
zxy完成签到,获得积分10
19秒前
江江发布了新的文献求助10
19秒前
lll发布了新的文献求助10
19秒前
20秒前
Orange应助满眼星辰采纳,获得10
21秒前
ding应助刘嘉玲采纳,获得10
21秒前
21秒前
23秒前
NexusExplorer应助Wink14551采纳,获得10
24秒前
充电宝应助坚强水香采纳,获得100
24秒前
阳光代容发布了新的文献求助10
24秒前
Hello应助琮博采纳,获得10
26秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176232
求助须知:如何正确求助?哪些是违规求助? 3711487
关于积分的说明 11704799
捐赠科研通 3394473
什么是DOI,文献DOI怎么找? 1862389
邀请新用户注册赠送积分活动 921126
科研通“疑难数据库(出版商)”最低求助积分说明 833014