温室气体
碳足迹
标杆管理
计算机科学
推论
绘图
人工智能
人工神经网络
偏移量(计算机科学)
深度学习
数据科学
环境经济学
机器学习
经济
管理
生态学
生物
计算机图形学(图像)
程序设计语言
作者
Vadim Korolev,Artem Mitrofanov
标识
DOI:10.26434/chemrxiv-2023-zctn1-v3
摘要
While artificial intelligence drives remarkable progress in natural sciences, its broader societal implications are mostly disregarded. In this study, we evaluate environmental impacts of deep learning in materials science through extensive benchmarking. In particular, a set of diverse neural networks is trained for a given supervised learning task to assess greenhouse gas (GHG) emissions during training and inference phases. A chronological perspective showed diminishing returns, manifesting themselves as a 28% decrease in mean absolute error and nearly a 15000% increase in the carbon footprint of model training in 2016–2022. By means of up-to-date graphics processing units, it is possible to partially offset the immense growth of GHG emissions. Nonetheless, the practice of employing energy-efficient hardware is overlooked by the materials informatics community, as follows from a literature analysis in the field. On the basis of our findings, we encourage researchers to report GHG emissions together with standard performance metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI