Influences of the evolving plastic behavior of sheet metal on V-bending and springback analysis considering different stress states

材料科学 张力(地质) 压缩(物理) 平面应力 金属薄板 压力(语言学) 中性轴 复合材料 可塑性 弯曲 模数 结构工程 有限元法 语言学 哲学 梁(结构) 工程类
作者
Chong Zhang,Yanshan Lou
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:173: 103889-103889
标识
DOI:10.1016/j.ijplas.2024.103889
摘要

Bending is a common forming process that covers various stress states during sheet metal forming, mainly from uniaxial to plane strain states of both tension and compression depending on the inner or outer sides of the sheet. To model the tension-compression asymmetry (TCA) at different stress states, a five stress states-sensitive (Five-SSS) yield function is proposed. The non-linear effect of stress triaxiality η on plasticity is considered. Multiple analytical calibration methods are obtained for the Five-SSS function by considering different groups of stress states from equi-biaxial compression to equi-biaxial tension. One of the methods considers the uniaxial tension, uniaxial compression, plane strain tension, plane strain compression and equi-biaxial tension, which is used to simulate the V-bending process of an advanced high-strength steel QP1180 and a magnesium alloy AZ31. A modified Lode-dependent anisotropic-asymmetric (LAA) function is adopted as plastic potential to model both the TCA and evolution of r-value. The Five-SSS + modified LAA functions can predict the double shift of neutral layer during V-bending for the two investigated materials due to multiple reverse loading in the neutral layer shift zone. For the springback prediction of V-bending, it is observed that the Five-SSS yield function can highly improve the prediction accuracy compared to other functions because it models the TCA under both uniaxial and plane strain states. In addition, the TCA of unloading modulus should be considered for AZ31 to significantly improve the accuracy of springback prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助Ly啦啦啦采纳,获得10
1秒前
泥花发布了新的文献求助10
3秒前
今后应助tan90采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
Qin应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得30
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
若雨凌风应助科研通管家采纳,获得20
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
个性归尘应助科研通管家采纳,获得30
8秒前
Qin应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得30
8秒前
个性归尘应助科研通管家采纳,获得30
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
科研助手6应助科研通管家采纳,获得10
8秒前
个性归尘应助科研通管家采纳,获得30
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小蘑菇应助骆怀薇采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
9秒前
eeeee发布了新的文献求助10
9秒前
11秒前
tan90完成签到,获得积分10
11秒前
啦啦发布了新的文献求助10
12秒前
Joy发布了新的文献求助10
13秒前
14秒前
15秒前
XXBB发布了新的文献求助10
15秒前
15秒前
guochenggong完成签到,获得积分20
15秒前
16秒前
16秒前
16秒前
nozero应助CKK采纳,获得50
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836201
求助须知:如何正确求助?哪些是违规求助? 3378568
关于积分的说明 10504924
捐赠科研通 3098152
什么是DOI,文献DOI怎么找? 1706298
邀请新用户注册赠送积分活动 820954
科研通“疑难数据库(出版商)”最低求助积分说明 772348