Trans-UNeter: A new Decoder of TransUNet for Medical Image Segmentation

计算机科学 编码器 分割 串联(数学) 人工智能 卷积神经网络 解码方法 图像分割 变压器 模式识别(心理学) 算法 物理 数学 组合数学 电压 量子力学 操作系统
作者
Jiakun Yu,Jianfeng Qin,Jinhai Xiang,Xinwei He,Wen Zhang,Weiming Zhao
标识
DOI:10.1109/bibm58861.2023.10385407
摘要

Recently, how to integrate convolutional neural networks and transformers into a U-Net-like encoder-decoder structure has drawn growing interest in medical image segmentation, as transformer is more efficient in capturing longrange relations. Following this line of research, TransUNet is one representative work. However, it still insufficiently explores the rich relations of features from the encoder layer and the decoder layer with just a simple concatenation, which weakens their effectiveness to some extent. To address this issue, we propose two important design improvements to strengthen TransUNet: 1) a novel skip connection module, which upsamples the high-level semantic features and fuse it with low-level features, producing comprehensive semantic-aware features for the decoder. 2) an improved decoder network cascades reverse attention and spatial attention to adaptively combines features from the corresponding encoder layer and the previously decoded outputs.The results of the abdominal multi-organ segmentation experiment on the Synapse multi-organ segmentation dataset indicated that Trans-UNeter improved the mean similarity coefficient(DSC) by 3.71% compared to TransUNet. Code and models are available at https://github.com/iaoqin/Trans-UNeter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hua应助高桥凉介采纳,获得10
1秒前
1秒前
shawfang完成签到,获得积分10
1秒前
1秒前
Chouvikin完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
顺利毕业完成签到 ,获得积分10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得30
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得20
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
6秒前
小东西发布了新的文献求助10
7秒前
9秒前
9秒前
DDT发布了新的文献求助10
11秒前
Xuan完成签到,获得积分10
11秒前
大个应助HHH采纳,获得30
12秒前
14秒前
糯糯发布了新的文献求助10
14秒前
16秒前
jenningseastera应助高桥凉介采纳,获得10
16秒前
睡不着发布了新的文献求助10
17秒前
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845038
求助须知:如何正确求助?哪些是违规求助? 3387231
关于积分的说明 10548456
捐赠科研通 3107954
什么是DOI,文献DOI怎么找? 1712287
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774706