亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated pixel-level crack detection and quantification using deep convolutional neural networks for structural condition assessment

卷积神经网络 计算机科学 分割 像素 特征(语言学) 人工智能 棱锥(几何) 深度学习 人工神经网络 模式识别(心理学) 块(置换群论) 频道(广播) 数学 几何学 电信 哲学 语言学
作者
Jingyue Yuan,Qingying Ren,Chao Jia,Juntao Zhang,Jiake Fu,Mingchao Li
出处
期刊:Structures [Elsevier BV]
卷期号:59: 105780-105780 被引量:8
标识
DOI:10.1016/j.istruc.2023.105780
摘要

Crack detection is a crucial task in assessing the condition of concrete structures. Herein, a novel deep learning method based on convolutional neural networks, referred to as R-FPANet, is proposed for crack detection. The R-FPANet performs automatic segmentation and quantification of crack morphology at the pixel level. In this methodology, the modularization concept based on the following three modules is adopted: ResNet-50 is chosen as the backbone to extract features from images, the Feature Pyramid Network with Dense Block is integrated to promote the fusion of both shallow and deep features as well as enhance feature reuse, and self-attention mechanisms such as Channel Attention Module and Position Attention Module are introduced to strengthen the dependency between features. Based on the crack segmentation results, a suitably established framework is developed for quantitative analysis of the major geometric parameters, including crack area, crack length, crack mean width and crack max-width at the pixel level. To verify the effectiveness of the proposed method, a large-scale concrete crack image dataset was produced and carefully labeled at the pixel level and then utilized to train the model. Finally, our experiments reveal that the proposed approach achieves an Intersection over Union of 83.07%, further indicating that the segmentation performance of the proposed method is better than the state-of-the-art models and also confirming that the crack quantification results are close to reality. Overall, the proposed method performs well, contributing to crack detection and quantification with great potential for practical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助祥子采纳,获得10
10秒前
古铜完成签到 ,获得积分10
18秒前
20秒前
24秒前
祥子发布了新的文献求助10
29秒前
祥子完成签到,获得积分10
38秒前
1分钟前
2分钟前
2分钟前
Fairy完成签到,获得积分10
2分钟前
2分钟前
所所应助天欲雪采纳,获得10
2分钟前
2分钟前
2分钟前
Ji发布了新的文献求助10
2分钟前
嘻嘻完成签到,获得积分10
2分钟前
3分钟前
天欲雪发布了新的文献求助10
3分钟前
3分钟前
4分钟前
脑洞疼应助满意的草莓采纳,获得10
4分钟前
zozox完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
科目三应助尊敬唇膏采纳,获得30
5分钟前
5分钟前
5分钟前
5分钟前
包容仙人掌完成签到,获得积分10
5分钟前
葵花籽发布了新的文献求助10
5分钟前
tszjw168完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助150
6分钟前
6分钟前
浮游应助大方的百川采纳,获得10
6分钟前
自信的凝天完成签到,获得积分10
6分钟前
伏城完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4858649
求助须知:如何正确求助?哪些是违规求助? 4154296
关于积分的说明 12874475
捐赠科研通 3904827
什么是DOI,文献DOI怎么找? 2145440
邀请新用户注册赠送积分活动 1164550
关于科研通互助平台的介绍 1065977