Unsupervised Adaptive Feature Selection With Binary Hashing

判别式 散列函数 计算机科学 人工智能 模式识别(心理学) 特征选择 降维 特征(语言学) 特征学习 二进制代码 特征提取 特征哈希 二进制数 机器学习 哈希表 数学 双重哈希 哲学 算术 语言学 计算机安全
作者
Dan Shi,Lei Zhu,Jingjing Li,Zheng Zhang,Xiaojun Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 838-853 被引量:40
标识
DOI:10.1109/tip.2023.3234497
摘要

Unsupervised feature selection chooses a subset of discriminative features to reduce feature dimension under the unsupervised learning paradigm. Although lots of efforts have been made so far, existing solutions perform feature selection either without any label guidance or with only single pseudo label guidance. They may cause significant information loss and lead to semantic shortage of the selected features as many real-world data, such as images and videos are generally annotated with multiple labels. In this paper, we propose a new Unsupervised Adaptive Feature Selection with Binary Hashing (UAFS-BH) model, which learns binary hash codes as weakly-supervised multi-labels and simultaneously exploits the learned labels to guide feature selection. Specifically, in order to exploit the discriminative information under the unsupervised scenarios, the weakly-supervised multi-labels are learned automatically by specially imposing binary hash constraints on the spectral embedding process to guide the ultimate feature selection. The number of weakly-supervised multi-labels (the number of "1" in binary hash codes) is adaptively determined according to the specific data content. Further, to enhance the discriminative capability of binary labels, we model the intrinsic data structure by adaptively constructing the dynamic similarity graph. Finally, we extend UAFS-BH to multi-view setting as Multi-view Feature Selection with Binary Hashing (MVFS-BH) to handle the multi-view feature selection problem. An effective binary optimization method based on the Augmented Lagrangian Multiple (ALM) is derived to iteratively solve the formulated problem. Extensive experiments on widely tested benchmarks demonstrate the state-of-the-art performance of the proposed method on both single-view and multi-view feature selection tasks. For the purpose of reproducibility, we provide the source codes and testing datasets at https://github.com/shidan0122/UMFS.git..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助喜悦夏彤采纳,获得10
2秒前
勤劳寒烟完成签到,获得积分10
4秒前
5秒前
5秒前
ding应助upcomingbias采纳,获得30
10秒前
10秒前
smj发布了新的文献求助10
10秒前
123456hhh完成签到,获得积分10
11秒前
动漫大师发布了新的文献求助30
13秒前
lucky发布了新的文献求助10
14秒前
14秒前
15秒前
18秒前
18秒前
19秒前
smj完成签到,获得积分10
20秒前
20秒前
dfhh发布了新的文献求助10
20秒前
胡桃发布了新的文献求助10
20秒前
gaogaogao完成签到,获得积分20
21秒前
大模型应助科研通管家采纳,获得10
21秒前
21秒前
yztz应助科研通管家采纳,获得10
22秒前
hucchongzi应助科研通管家采纳,获得10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
yztz应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
22秒前
zlsf应助科研通管家采纳,获得200
22秒前
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
upcomingbias发布了新的文献求助30
23秒前
Hang发布了新的文献求助10
23秒前
gaogaogao发布了新的文献求助30
25秒前
阳光发布了新的文献求助10
25秒前
共享精神应助满意花生采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781649
求助须知:如何正确求助?哪些是违规求助? 3327217
关于积分的说明 10230067
捐赠科研通 3042074
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774