亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-Driven Machine-Learning Approach Incorporating Temporal Coupled Mode Theory for Intelligent Design of Metasurfaces

谐振器 人工神经网络 计算机科学 电子工程 电磁学 物理 人工智能 光学 工程类
作者
Jianan Zhang,Jian Wei You,Feng Feng,Weicong Na,Zhuo Chen Lou,Qi‐Jun Zhang,Tie Jun Cui
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:71 (7): 2875-2887 被引量:15
标识
DOI:10.1109/tmtt.2023.3238076
摘要

Metasurfaces find a wide variety of applications in the last decades due to their powerful ability to manipulate electromagnetic (EM) waves. Traditional approaches for metasurface design require massive full-wave EM simulations to achieve optimal geometrical parameter values, resulting in an inefficient design process of metasurfaces. In this article, we propose a physics-driven machine-learning (ML) approach incorporating temporal coupled mode theory (CMT) to improve the design efficiency and implement an intelligent design of metasurfaces. In the proposed approach, a surrogate model (i.e., neuro-CMT model) is developed to speed up the prediction of EM responses of metasurfaces. A three-stage method is used to develop the neuro-CMT model. First, we perform full-wave EM simulations of unit cells only containing single- and double-resonators for different geometrical design parameter values. Second, we extract the single- and double-resonator CMT parameters for each geometrical parameter value by fitting the corresponding EM responses based on CMT equations. Third, we train neural networks to learn the relationships between the CMT parameters and geometrical parameters for single- and double-resonator systems, respectively. These trained neural networks, in conjunction with the multiresonator CMT equation, become an efficient tool to accurately predict the EM responses of any arbitrary coupled multiresonator systems. The proposed neuro-CMT model can be further utilized for metasurface design optimizations. Two metasurface absorbers are given as examples to demonstrate the efficient and intelligent advantages of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc举报Gummybear求助涉嫌违规
30秒前
48秒前
Owen应助小人物采纳,获得20
49秒前
国色不染尘完成签到,获得积分10
1分钟前
1分钟前
饼干发布了新的文献求助10
1分钟前
饼干完成签到,获得积分20
1分钟前
1分钟前
传奇3应助LYL采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
彭于晏应助11采纳,获得10
2分钟前
2分钟前
11发布了新的文献求助10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
老石完成签到 ,获得积分10
2分钟前
3分钟前
称心如意完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
LYL发布了新的文献求助10
3分钟前
桐桐应助11采纳,获得10
3分钟前
3分钟前
123完成签到,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
Denmark完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Roentgenstrahlen完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
rerorero18发布了新的文献求助10
5分钟前
zyw完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263158
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511