Machine Learning Prediction of Objective Hearing Loss With Demographics, Clinical Factors, and Subjective Hearing Status

医学 接收机工作特性 置信区间 听力损失 听力学 全国健康与营养检查调查 人口统计学的 队列 逐步回归 逻辑回归 助听器 体质指数 人口学 内科学 人口 社会学 环境卫生
作者
Tyler J. Gathman,Janet S. Choi,Ranveer Vasdev,Jamee Schoephoerster,Meredith E. Adams
出处
期刊:Otolaryngology-Head and Neck Surgery [Wiley]
卷期号:169 (3): 504-513 被引量:6
标识
DOI:10.1002/ohn.288
摘要

Abstract Objective Hearing loss (HL) is highly prevalent, yet underrecognized and underdiagnosed. Lack of standardized screening, awareness, cost, and access to hearing testing present barriers to HL identification. To facilitate prescreening and selection of patients who warrant audiometric evaluation, we developed a machine learning (ML) model to predict speech‐frequency pure‐tone average (PTA). Study Design Cross‐sectional study. Setting National Health and Nutrition Examination Survey (NHANES). Methods The cohort included 8918 adults (≥20 years) who completed audiometric testing with NHANES (2012‐2018). The primary outcome measure was the prediction of better hearing ear speech‐frequency PTA. Relevant predictors included demographics, medical conditions, and subjective assessment of hearing. Supervised ML with a tree‐based architecture was used. Regression performance was determined by the mean absolute error (MAE) with binary classification assessed with area under the receiver operating characteristic curve (AUC). Results Using the full set of predictors, the test set MAE between the ML‐predicted and actual PTA was 5.29 dB HL (95% confidence interval [CI]: 4.97‐5.61). The 5 most influential predictors of higher PTA were increased age, worse subjective hearing, male gender, increased body mass index, and history of smoking. The 5‐factor abbreviated model performed comparably to the extended feature set with MAE 5.36 (95% CI: 5.03‐5.69) and AUC for PTA > 25 dB HL of 0.92 (95% CI: 0.90‐0.94). Conclusion The ML model was able to predict PTA with patient demographics, clinical factors, and subjective hearing status. ML‐based prediction may be used to identify individuals who could benefit most from audiometric evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cfplhys完成签到,获得积分10
1秒前
LYDZ1完成签到,获得积分10
2秒前
七月星河完成签到 ,获得积分10
2秒前
4秒前
Chikit完成签到,获得积分10
4秒前
仲乔妹完成签到,获得积分10
6秒前
萝卜完成签到,获得积分10
6秒前
CC7012发布了新的文献求助30
8秒前
王琳完成签到,获得积分10
8秒前
李爱国应助泥花采纳,获得10
8秒前
kiko发布了新的文献求助10
10秒前
10秒前
鹿c3完成签到,获得积分10
11秒前
11秒前
傻瓜子完成签到,获得积分10
12秒前
诸葛御风完成签到,获得积分10
12秒前
13秒前
14秒前
关山完成签到,获得积分10
14秒前
15秒前
16秒前
渣155136发布了新的文献求助10
17秒前
13508104971发布了新的文献求助10
18秒前
daliu完成签到,获得积分10
19秒前
科研轮回发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
小韩完成签到,获得积分10
22秒前
秀丽高跟鞋完成签到,获得积分10
22秒前
高xuewen发布了新的文献求助10
24秒前
13508104971完成签到,获得积分10
24秒前
所所应助万续采纳,获得10
24秒前
gyl完成签到 ,获得积分10
29秒前
苏苏苏完成签到 ,获得积分10
29秒前
一盏壶完成签到,获得积分10
30秒前
麻瓜晋升小巫师完成签到,获得积分10
31秒前
努力科研的小吴完成签到,获得积分10
32秒前
32秒前
Lqiang完成签到,获得积分10
33秒前
alex完成签到,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864082
求助须知:如何正确求助?哪些是违规求助? 3406413
关于积分的说明 10649643
捐赠科研通 3130351
什么是DOI,文献DOI怎么找? 1726369
邀请新用户注册赠送积分活动 831656
科研通“疑难数据库(出版商)”最低求助积分说明 779992