6G Connected Vehicle Framework to Support Intelligent Road Maintenance Using Deep Learning Data Fusion

利用 计算机科学 深度学习 人工智能 智能交通系统 转化式学习 机器学习 工程类 计算机安全 运输工程 心理学 教育学
作者
Mohammad Hijji,Rahat Iqbal,Anup Kumar Pandey,Faiyaz Doctor,Charalampos Karyotis,Wahid Rajeh,Ali Alshehri,Fahad Aradah
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (7): 7726-7735 被引量:31
标识
DOI:10.1109/tits.2023.3235151
摘要

The growth of IoT, edge and mobile Artificial Intelligence (AI) is supporting urban authorities exploit the wealth of information collected by Connected and Autonomous Vehicles (CAV), to drive the development of transformative intelligent transport applications for addressing smart city challenges. A critical challenge is timely and efficient road infrastructure maintenance. This paper proposes an intelligent hierarchical framework for road infrastructure maintenance that exploits the latest developments in 6G communication technologies, deep learning techniques, and mobile edge AI training approaches. The proposed framework abides with the stringent requirements of training efficient machine learning applications for CAV, and is able to exploit the vast numbers of CAVs forecasted to be present on future road networks. At the core of our framework is a novel Convolution Neural Networks (CNN) model which fuses imagery and sensory data to perform pothole detection. Experiments show the proposed model can achieve state of the art performance in comparison to existing approaches while being simple, cost-effective and computationally efficient to deploy. The proposed system can form part of a federated learning framework for facilitating large scale real-time road surface condition monitoring and support adaptive resource allocation for road infrastructure maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中一寡完成签到,获得积分20
2秒前
2秒前
汉堡发布了新的文献求助10
3秒前
YuanLeiZhang完成签到,获得积分10
5秒前
巅峰囚冰完成签到,获得积分10
5秒前
bobo发布了新的文献求助10
6秒前
6秒前
6秒前
小新发布了新的文献求助10
7秒前
百合骑士完成签到,获得积分20
7秒前
武雨寒发布了新的文献求助10
8秒前
wsy关注了科研通微信公众号
9秒前
9秒前
moyu完成签到,获得积分10
10秒前
七七完成签到,获得积分10
10秒前
10秒前
11秒前
Solitude完成签到,获得积分10
11秒前
taster发布了新的文献求助10
11秒前
小新完成签到 ,获得积分10
11秒前
CipherSage应助余佘采纳,获得10
12秒前
wqc2060完成签到,获得积分10
12秒前
夏简完成签到,获得积分10
13秒前
13秒前
科研通AI5应助wise111采纳,获得10
15秒前
汉堡完成签到,获得积分10
15秒前
16秒前
情怀应助许元冬采纳,获得10
18秒前
Zxj发布了新的文献求助10
18秒前
机智冬瓜完成签到,获得积分10
19秒前
19秒前
脑洞疼应助妮妮采纳,获得10
19秒前
20秒前
11222浅发布了新的文献求助10
21秒前
21秒前
23秒前
8R60d8应助诸葛藏藏采纳,获得10
24秒前
王者归来完成签到,获得积分10
25秒前
甜甜圈发布了新的文献求助10
26秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572