已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved Wavenet network for multi-step-ahead wind energy forecasting

计算机科学 风电预测 单变量 机器学习 人工智能 功率(物理) 多元统计 电力系统 量子力学 物理
作者
Yun Wang,Tuo Chen,Shengchao Zhou,Fan Zhang,Ruming Zou,Qinghua Hu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:278: 116709-116709 被引量:26
标识
DOI:10.1016/j.enconman.2023.116709
摘要

Accurate multi-step-ahead wind speed (WS) and wind power (WP) forecasting are critical to the scheduling, planning, and maintenance of wind farms. Previous forecasting methods tend to focus on improving forecast accuracy by integrating different models and disaggregating data while neglecting the forecasting ability of basic models. In addition, traditional multi-step-ahead output strategies have limitations that constrain the forecasting capability of models. To overcome the above challenges, this study proposes a novel forecasting model called ED-Wavenet-TF. It adopts two Wavenet networks as Encoder and Decoder connected by the multi-head self-attention mechanism. And, teacher forcing is used as the multi-step-ahead output strategy for WS and WP forecasting. In the training phase, ED-Wavenet-TF uses a portion of the actual data to correct the errors at the intermediate forecasting steps, while in the forecasting phase, it runs through an inference loop to make forecasts. In this study, two WS datasets and two WP datasets are used to validate the performance of ED-Wavenet-TF with univariate input. The results show that compared with Wavenet, the symmetric mean absolute percentage error of ED-Wavenet-TF at four forecasting steps is lower by at least 4.8577% on average for the WS datasets and 8.9463% on average for the WP datasets. The advantages of ED-Wavenert-TF over ten comparable models are confirmed by four evaluation indicators and the Harvey, Leybourne, and Newbold statistical hypothesis test. Moreover, ED-Wavenet-TF is extended to make multi-step-ahead forecasts with multivariate inputs, whose effectiveness is demonstrated on another open WS dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮雨兰发布了新的文献求助10
4秒前
辛勤的剑完成签到 ,获得积分10
4秒前
SHD完成签到 ,获得积分10
8秒前
dada完成签到,获得积分10
12秒前
13秒前
13秒前
fate发布了新的文献求助10
13秒前
Skywalker完成签到,获得积分10
14秒前
xxx完成签到 ,获得积分10
16秒前
max完成签到,获得积分10
17秒前
健壮雨兰完成签到,获得积分10
18秒前
舒心雨发布了新的文献求助10
18秒前
睡觉王完成签到 ,获得积分10
20秒前
科研小菜完成签到 ,获得积分10
20秒前
22秒前
朝气完成签到,获得积分10
23秒前
123完成签到,获得积分10
24秒前
24秒前
小航完成签到 ,获得积分10
28秒前
28秒前
31秒前
宅宅完成签到 ,获得积分10
31秒前
34秒前
35秒前
木木发布了新的文献求助10
36秒前
奶昔完成签到,获得积分20
37秒前
meow完成签到 ,获得积分10
37秒前
wmx0521发布了新的文献求助10
38秒前
39秒前
junkook完成签到 ,获得积分10
43秒前
谦让月饼完成签到 ,获得积分10
43秒前
100完成签到,获得积分10
45秒前
打打应助Jorna采纳,获得10
48秒前
50秒前
兴尽晚回舟完成签到,获得积分10
51秒前
林夕发布了新的文献求助10
52秒前
feng1235完成签到,获得积分10
53秒前
大华发布了新的文献求助10
54秒前
小二郎应助一一采纳,获得10
54秒前
56秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800821
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329064
捐赠科研通 3062766
什么是DOI,文献DOI怎么找? 1681193
邀请新用户注册赠送积分活动 807425
科研通“疑难数据库(出版商)”最低求助积分说明 763702