An improved Wavenet network for multi-step-ahead wind energy forecasting

计算机科学 风电预测 单变量 机器学习 人工智能 功率(物理) 多元统计 电力系统 量子力学 物理
作者
Yun Wang,Tuo Chen,Shengchao Zhou,Fan Zhang,Ruming Zou,Qinghua Hu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:278: 116709-116709 被引量:26
标识
DOI:10.1016/j.enconman.2023.116709
摘要

Accurate multi-step-ahead wind speed (WS) and wind power (WP) forecasting are critical to the scheduling, planning, and maintenance of wind farms. Previous forecasting methods tend to focus on improving forecast accuracy by integrating different models and disaggregating data while neglecting the forecasting ability of basic models. In addition, traditional multi-step-ahead output strategies have limitations that constrain the forecasting capability of models. To overcome the above challenges, this study proposes a novel forecasting model called ED-Wavenet-TF. It adopts two Wavenet networks as Encoder and Decoder connected by the multi-head self-attention mechanism. And, teacher forcing is used as the multi-step-ahead output strategy for WS and WP forecasting. In the training phase, ED-Wavenet-TF uses a portion of the actual data to correct the errors at the intermediate forecasting steps, while in the forecasting phase, it runs through an inference loop to make forecasts. In this study, two WS datasets and two WP datasets are used to validate the performance of ED-Wavenet-TF with univariate input. The results show that compared with Wavenet, the symmetric mean absolute percentage error of ED-Wavenet-TF at four forecasting steps is lower by at least 4.8577% on average for the WS datasets and 8.9463% on average for the WP datasets. The advantages of ED-Wavenert-TF over ten comparable models are confirmed by four evaluation indicators and the Harvey, Leybourne, and Newbold statistical hypothesis test. Moreover, ED-Wavenet-TF is extended to make multi-step-ahead forecasts with multivariate inputs, whose effectiveness is demonstrated on another open WS dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老铁完成签到,获得积分10
1秒前
JamesPei应助lili采纳,获得30
1秒前
zxh123发布了新的文献求助10
1秒前
机灵安白完成签到,获得积分10
1秒前
ei发布了新的文献求助10
1秒前
PSL完成签到,获得积分10
1秒前
所所应助如常采纳,获得10
1秒前
lllroy完成签到,获得积分10
2秒前
寒士完成签到,获得积分10
2秒前
浮游应助mirror采纳,获得10
2秒前
儒雅的山河完成签到 ,获得积分10
3秒前
畅快纸飞机完成签到,获得积分10
3秒前
脑洞疼应助AA采纳,获得30
3秒前
3秒前
科研通AI5应助无聊的惜文采纳,获得10
3秒前
张艳坤完成签到 ,获得积分10
4秒前
南威发布了新的文献求助10
4秒前
4秒前
Bonfire发布了新的文献求助10
4秒前
咩咩发布了新的文献求助10
5秒前
小马甲应助LIJIngcan采纳,获得10
5秒前
lyj发布了新的文献求助10
5秒前
ei完成签到,获得积分10
6秒前
wenbin完成签到,获得积分10
7秒前
Aom发布了新的文献求助10
8秒前
Jasper应助KKKK采纳,获得10
8秒前
天涯完成签到,获得积分10
8秒前
丰富的大地完成签到,获得积分10
8秒前
luluan完成签到,获得积分20
9秒前
adc完成签到,获得积分20
10秒前
Moudexiao完成签到 ,获得积分10
10秒前
丰富的冰棍完成签到 ,获得积分10
11秒前
liriyii完成签到,获得积分20
11秒前
boluo完成签到,获得积分10
12秒前
12秒前
12秒前
咩咩完成签到,获得积分10
12秒前
12秒前
找文献的螺完成签到,获得积分10
12秒前
阴森女公爵完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978