亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable machine-learning algorithms to differentiate bipolar disorder from major depressive disorder using self-reported symptoms, vital signs, and blood-based markers

重性抑郁障碍 双相情感障碍 逻辑回归 队列 随机森林 人工智能 机器学习 算法 医学 人口 重性抑郁发作 精神科 计算机科学 内科学 认知 环境卫生
作者
Ting Zhu,Xiaofei Liu,Junren Wang,Ran Kou,Yao Hu,Minlan Yuan,Cui Yuan,Li Luo,Wei Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107723-107723 被引量:22
标识
DOI:10.1016/j.cmpb.2023.107723
摘要

Caused by shared genetic risk factors and similar neuropsychological symptoms, bipolar disorder (BD) and major depressive disorder (MDD) are at high risk of misdiagnosis, which is associated with ineffective treatment and worsening of outcomes. We aimed to develop a machine learning (ML)-based diagnostic system, based on electronic medical records (EMR) data, to mimic the clinical reasoning of human physicians to differentiate MDD and BD (especially BD depressive episodes) patients about to be admitted to a hospital and, hence, reduce the misdiagnosis of BD as MDD on admission. In addition, we examined to what extent our ML model could be made interpretable by quantifying and visualizing the features that drive the predictions.By identifying 16,311 patients admitted to a hospital located in western China between 2009 and 2018 with a recorded main diagnosis of MDD or BD, we established three sub-cohorts with different combinations of features for both the MDD-BD cohort and the MDD-BD depressive episodes cohort, respectively. Four different ML algorithms (logistic regression, extreme gradient boosting (XGBoost), random forest, and support vector machine) and four train-test splits were used to train and validate diagnostic models, and explainable methods (SHAP and Break Down) were utilized to analyze the contribution of each of the features at both population-level and individual-level, including feature importance, feature interaction, and feature effect on prediction decision for a specific subject.The XGBoost algorithm provided the best test performance (AUC: 0.838 (0.810-0.867), PPV: 0.810 and NPV: 0.834) for separating patients with BD from those with MDD. Core predictors included symptoms (mood-up, exciting, bad sleep, loss of interest, talking, mood-down, provoke), along with age, job, myocardial enzyme markers (creatine kinase, hydroxybutyrate dehydrogenase), diabetes-associated marker (glucose), bone function marker (alkaline phosphatase), non-enzymatic antioxidant (uric acid), markers of immune/inflammation (white blood cell count, lymphocyte count, basophil percentage, monocyte count), cardiovascular function marker (low density lipoprotein), renal marker (total protein), liver biochemistry marker (indirect bilirubin), and vital signs like pulse. For separating patients with BD depressive episodes from those with MDD, the test AUC was 0.777 (0.732-0.822), with PPV 0.576 and NPV 0.899. Additional validation in models built with self-reported symptoms removed from the feature set, showed test AUC of 0.701 (0.666-0.736) for differentiating BD and MDD, and AUC of 0.564 (0.515-0.614) for detecting patients in BD depressive episodes from MDD patients. Validation in the datasets without removing the patients with comorbidity showed an AUC of 0.826 (0.806-0.846).The diagnostic system accurately identified patients with BD in various clinical scenarios, and differences in patterns of peripheral markers between BD and MDD could enrich our understanding of potential underlying pathophysiological mechanisms of them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zizi完成签到 ,获得积分10
4秒前
刘鑫慧完成签到 ,获得积分10
4秒前
yy完成签到,获得积分10
5秒前
9秒前
18秒前
等待冰之完成签到 ,获得积分10
22秒前
24秒前
111发布了新的文献求助10
24秒前
26秒前
28秒前
张张发布了新的文献求助10
29秒前
Akim应助zhongbo采纳,获得10
29秒前
tianfu1899发布了新的文献求助10
30秒前
白华苍松发布了新的文献求助10
30秒前
ceeray23发布了新的文献求助20
32秒前
哈哈哈哈完成签到 ,获得积分10
34秒前
我是老大应助清脆靳采纳,获得10
37秒前
38秒前
zhongbo发布了新的文献求助10
42秒前
友好灵阳完成签到 ,获得积分10
43秒前
46秒前
清脆靳发布了新的文献求助10
52秒前
ttkx完成签到,获得积分10
53秒前
端庄谷南完成签到 ,获得积分10
55秒前
ttkx发布了新的文献求助30
56秒前
爱睡觉的森森完成签到,获得积分10
57秒前
大爱人生完成签到 ,获得积分10
1分钟前
个性柜子关注了科研通微信公众号
1分钟前
beiwei完成签到 ,获得积分10
1分钟前
枯荣完成签到 ,获得积分10
1分钟前
coco234完成签到,获得积分10
1分钟前
1分钟前
杨蒙博完成签到 ,获得积分10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
lllroy完成签到,获得积分10
1分钟前
帮我下一下完成签到,获得积分10
1分钟前
无花果应助obito采纳,获得10
1分钟前
1分钟前
英俊的铭应助ttkx采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564775
求助须知:如何正确求助?哪些是违规求助? 4649490
关于积分的说明 14689018
捐赠科研通 4591475
什么是DOI,文献DOI怎么找? 2519172
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846