Deep learning system assisted detection and localization of lumbar spondylolisthesis

脊椎滑脱 召回 医学 腰椎 试验装置 人工智能 射线照相术 诊断准确性 卷积神经网络 骨科手术 计算机科学 放射科 外科 心理学 认知心理学
作者
Jiayao Zhang,Hui Lin,Honglin Wang,Mingdi Xue,Yīng Fāng,Songxiang Liu,Tongtong Huo,Hong Zhao,Jiaming Yang,Yi Xie,Mao Xie,Liren Cheng,Lin Lu,Pengran Liu,Zhewei Ye
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:11 被引量:2
标识
DOI:10.3389/fbioe.2023.1194009
摘要

Objective: Explore a new deep learning (DL) object detection algorithm for clinical auxiliary diagnosis of lumbar spondylolisthesis and compare it with doctors' evaluation to verify the effectiveness and feasibility of the DL algorithm in the diagnosis of lumbar spondylolisthesis. Methods: Lumbar lateral radiographs of 1,596 patients with lumbar spondylolisthesis from three medical institutions were collected, and senior orthopedic surgeons and radiologists jointly diagnosed and marked them to establish a database. These radiographs were randomly divided into a training set (n = 1,117), a validation set (n = 240), and a test set (n = 239) in a ratio of 0.7 : 0.15: 0.15. We trained two DL models for automatic detection of spondylolisthesis and evaluated their diagnostic performance by PR curves, areas under the curve, precision, recall, F1-score. Then we chose the model with better performance and compared its results with professionals' evaluation. Results: A total of 1,780 annotations were marked for training (1,242), validation (263), and test (275). The Faster Region-based Convolutional Neural Network (R-CNN) showed better precision (0.935), recall (0.935), and F1-score (0.935) in the detection of spondylolisthesis, which outperformed the doctor group with precision (0.927), recall (0.892), f1-score (0.910). In addition, with the assistance of the DL model, the precision of the doctor group increased by 4.8%, the recall by 8.2%, the F1-score by 6.4%, and the average diagnosis time per plain X-ray was shortened by 7.139 s. Conclusion: The DL detection algorithm is an effective method for clinical diagnosis of lumbar spondylolisthesis. It can be used as an assistant expert to improve the accuracy of lumbar spondylolisthesis diagnosis and reduce the clinical workloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助yy采纳,获得10
3秒前
黄诺关注了科研通微信公众号
3秒前
mmm发布了新的文献求助10
4秒前
zyc1111111发布了新的文献求助10
4秒前
xiaobai发布了新的文献求助10
5秒前
顾矜应助龙牙采纳,获得10
5秒前
勤恳涵菡发布了新的文献求助10
5秒前
Wguan完成签到,获得积分10
6秒前
华仔应助小哇采纳,获得10
6秒前
英姑应助Yellue采纳,获得10
7秒前
无望幽月完成签到 ,获得积分10
7秒前
Lau完成签到,获得积分10
8秒前
领导范儿应助星星采纳,获得10
9秒前
tannie完成签到 ,获得积分10
9秒前
吼吼哈哈完成签到,获得积分10
10秒前
糕糕发布了新的文献求助10
12秒前
13秒前
mmm完成签到,获得积分20
15秒前
龙牙发布了新的文献求助10
16秒前
zyc1111111完成签到,获得积分10
16秒前
科研通AI5应助秋子采纳,获得10
19秒前
21秒前
龙牙完成签到,获得积分10
22秒前
23秒前
天侠客完成签到,获得积分10
24秒前
24秒前
25秒前
十文字发布了新的文献求助10
27秒前
杨冰发布了新的文献求助10
28秒前
28秒前
29秒前
WYN发布了新的文献求助10
30秒前
30秒前
夏下下完成签到 ,获得积分10
30秒前
qiao应助科研通管家采纳,获得50
31秒前
HEIKU应助科研通管家采纳,获得20
31秒前
31秒前
HEAR应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
科研通AI5应助十文字采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780330
求助须知:如何正确求助?哪些是违规求助? 3325604
关于积分的说明 10223724
捐赠科研通 3040799
什么是DOI,文献DOI怎么找? 1669004
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648