Deep learning system assisted detection and localization of lumbar spondylolisthesis

脊椎滑脱 召回 医学 腰椎 试验装置 人工智能 射线照相术 诊断准确性 卷积神经网络 骨科手术 计算机科学 放射科 外科 心理学 认知心理学
作者
Jiayao Zhang,Hui Lin,Honglin Wang,Mingdi Xue,Yīng Fāng,Songxiang Liu,Tongtong Huo,Hong Zhao,Jiaming Yang,Yi Xie,Mao Xie,Liren Cheng,Lin Lu,Pengran Liu,Zhewei Ye
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media SA]
卷期号:11 被引量:2
标识
DOI:10.3389/fbioe.2023.1194009
摘要

Objective: Explore a new deep learning (DL) object detection algorithm for clinical auxiliary diagnosis of lumbar spondylolisthesis and compare it with doctors' evaluation to verify the effectiveness and feasibility of the DL algorithm in the diagnosis of lumbar spondylolisthesis. Methods: Lumbar lateral radiographs of 1,596 patients with lumbar spondylolisthesis from three medical institutions were collected, and senior orthopedic surgeons and radiologists jointly diagnosed and marked them to establish a database. These radiographs were randomly divided into a training set (n = 1,117), a validation set (n = 240), and a test set (n = 239) in a ratio of 0.7 : 0.15: 0.15. We trained two DL models for automatic detection of spondylolisthesis and evaluated their diagnostic performance by PR curves, areas under the curve, precision, recall, F1-score. Then we chose the model with better performance and compared its results with professionals' evaluation. Results: A total of 1,780 annotations were marked for training (1,242), validation (263), and test (275). The Faster Region-based Convolutional Neural Network (R-CNN) showed better precision (0.935), recall (0.935), and F1-score (0.935) in the detection of spondylolisthesis, which outperformed the doctor group with precision (0.927), recall (0.892), f1-score (0.910). In addition, with the assistance of the DL model, the precision of the doctor group increased by 4.8%, the recall by 8.2%, the F1-score by 6.4%, and the average diagnosis time per plain X-ray was shortened by 7.139 s. Conclusion: The DL detection algorithm is an effective method for clinical diagnosis of lumbar spondylolisthesis. It can be used as an assistant expert to improve the accuracy of lumbar spondylolisthesis diagnosis and reduce the clinical workloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
无辜澜发布了新的文献求助10
1秒前
XIAOMEIMA完成签到,获得积分10
1秒前
lxxy完成签到,获得积分10
1秒前
mukeke发布了新的文献求助10
1秒前
2秒前
852应助超级碧曼采纳,获得10
2秒前
bkagyin应助He采纳,获得30
2秒前
可爱的函函应助LQ采纳,获得10
2秒前
OrangeWang完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
小冉发布了新的文献求助10
6秒前
wenchong发布了新的文献求助20
7秒前
7秒前
无奈发布了新的文献求助10
7秒前
8秒前
初夏完成签到,获得积分10
8秒前
一鸣发布了新的文献求助30
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得20
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
dreamfox发布了新的文献求助10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
tt发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
yyzhou应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
喵喵拳应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492371
求助须知:如何正确求助?哪些是违规求助? 4590495
关于积分的说明 14430692
捐赠科研通 4522967
什么是DOI,文献DOI怎么找? 2478089
邀请新用户注册赠送积分活动 1463151
关于科研通互助平台的介绍 1435822