Prediction models of bioaerosols inside office buildings: A field study investigation

室内生物气溶胶 生物气溶胶 泊松回归 环境科学 回归分析 室内空气质量 线性回归 泊松分布 重复性 统计 环境工程 气象学 环境卫生 数学 地理 医学 气溶胶 人口
作者
Dong Jiang,Xiaoqiang Gong,Zhengsong Xu,Kai Yuan,Zengwen Bu
出处
期刊:Building Services Engineering Research and Technology [SAGE Publishing]
卷期号:44 (5): 577-600 被引量:2
标识
DOI:10.1177/01436244231189138
摘要

Bioaerosols formed by microorganisms in the air directly affect people’s health. The air quality in an office building in Shenzhen, China, is investigated and pollutant levels measured on 36 occasions; six times for each of six indoor spaces. A relationship between indoor bioaerosols and environmental factors was determined using both linear regression analysis and Poisson regression analysis. Our results and analysis indicate that linear regression is a poor predictor for the concentration of bioaerosols based on a single indicator. In contrast, Poisson regression can better predict the concentration of bioaerosols, and PM 10 may be the indicator with the greatest impact on bioaerosols. As a result, a simple, fast, and low-cost online monitoring method for monitoring indoor bioaerosols is developed and reported. Our paper provides first-hand basic data to predict the indoor bioaerosol concentration and helps to formulate appropriate monitoring guidelines. The proposed method offers more practical values compared to existing studies as our prediction model facilitates estimation of the concentration of bioaerosols at low cost. Additionally, due to the current maturity and low cost of indoor environmental sensors, the proposed method is suitable for large-scale deployment for most buildings. Practical application Based on measurement data from a real office building, our investigation explores the relationship between indoor microorganisms and building environmental indicators through a combination of probability analysis and actual measurement. We establish a novel indoor microbial prediction model using the Poisson regression model. Our work presents an effective, low-cost, method for estimating the concentration of bioaerosols and discusses the possibility for large-scale deployment of microbial monitoring equipment inside buildings which may then support real-time monitoring of indoor microbial concentration to provide healthy indoor environments for personnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助shenkekeyan采纳,获得10
1秒前
1秒前
cici发布了新的文献求助30
1秒前
科研通AI5应助宫野珏采纳,获得10
1秒前
zhangnan完成签到,获得积分10
1秒前
秒秒发布了新的文献求助10
2秒前
苗条的时光完成签到,获得积分10
2秒前
从容的笑天完成签到,获得积分10
3秒前
3秒前
hony完成签到,获得积分10
3秒前
老陆完成签到,获得积分10
3秒前
Docsiwen完成签到 ,获得积分10
3秒前
现代绮玉完成签到,获得积分10
4秒前
乘风完成签到,获得积分10
4秒前
终于花开日完成签到 ,获得积分10
5秒前
道道sy完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
支妙完成签到,获得积分10
7秒前
hxl发布了新的文献求助10
8秒前
自由的奎发布了新的文献求助10
8秒前
mss12138完成签到,获得积分10
8秒前
无敌幸运儿完成签到,获得积分10
8秒前
8秒前
威武冷雪完成签到,获得积分10
9秒前
9秒前
晚风发布了新的文献求助10
10秒前
sheep完成签到,获得积分10
10秒前
鳗鱼落雁完成签到 ,获得积分10
10秒前
GSQ完成签到,获得积分20
10秒前
Xu完成签到 ,获得积分10
11秒前
任性的蝴蝶完成签到,获得积分10
11秒前
hhhh完成签到,获得积分10
11秒前
Cat发布了新的文献求助10
12秒前
13秒前
鞭霆发布了新的文献求助20
13秒前
杨冰发布了新的文献求助10
13秒前
宫冷雁完成签到,获得积分10
13秒前
1GE完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784903
求助须知:如何正确求助?哪些是违规求助? 3330232
关于积分的说明 10245019
捐赠科研通 3045573
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800646
科研通“疑难数据库(出版商)”最低求助积分说明 759577