PINN-FORM: A new physics-informed neural network for reliability analysis with partial differential equation

计算机科学 偏微分方程 可靠性(半导体) 一阶偏微分方程 人工神经网络 应用数学 牙石(牙科) 数学 人工智能 热力学 医学 数学分析 物理 功率(物理) 牙科
作者
Zeng Meng,Q. Q. Qian,Mengqiang Xu,Bo Yu,Ali Rıza Yıldız,Seyedali Mirjalili
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:414: 116172-116172 被引量:133
标识
DOI:10.1016/j.cma.2023.116172
摘要

The first-order reliability method (FORM) is commonly used in the field of structural reliability analysis, which transforms the reliability analysis problem into the solution of an optimization problem with equality constraint. However, when the limit state functions (LSFs) in mechanical and engineering problems are complex, particularly for implicit partial differential equations (PDEs), FORM encounters computation difficulty and incurs unbearable computational effort. In this study, the physics-informed neural network (PINN), which is a new branch of deep learning technology for addressing forward and inverse problems with PDEs, is applied as a black-box solution tool. For LSFs with implicit PDE expressions, PINN-FORM is constructed by combining PINN with FORM, which can avoid the calculation of the real structure response. Moreover, a loss function model with an optimization target item is established. Then, an adaptive weight strategy, which can balance the interplay between different parts of the loss function, is suggested to enhance the predictive accuracy. To demonstrate the effectiveness of PINN-FORM, five benchmark examples with LSFs expressed by implicit PDEs, including two-dimensional and three-dimensional problems, and steady state and transient state problems are tested. The results illustrate the proposed PINN-FORM not only is very accurate, but also can simultaneously predict the solutions of PDEs and reliability index within a single training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蒜蒜发布了新的文献求助10
2秒前
Hello应助blureeee采纳,获得10
2秒前
2秒前
optical完成签到,获得积分10
3秒前
3秒前
啊哦应助Dong采纳,获得10
3秒前
SSSimon发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
5秒前
FF发布了新的文献求助10
5秒前
5秒前
6秒前
梓文完成签到,获得积分10
6秒前
8秒前
lilijob发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
起年完成签到,获得积分10
10秒前
11秒前
Ava应助寄偶采纳,获得10
12秒前
虚幻不弱发布了新的文献求助10
12秒前
hobart_young发布了新的文献求助10
12秒前
Brain完成签到,获得积分10
12秒前
科研通AI5应助活力惜寒采纳,获得10
14秒前
14秒前
番茄加菲完成签到,获得积分10
14秒前
刘硕完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助20
16秒前
16秒前
山鬼完成签到,获得积分10
16秒前
17秒前
Sea_U应助PeterLin采纳,获得10
17秒前
yolo完成签到,获得积分10
17秒前
冬雾发布了新的文献求助10
17秒前
17秒前
18秒前
一人完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002750
求助须知:如何正确求助?哪些是违规求助? 4247654
关于积分的说明 13233788
捐赠科研通 4046574
什么是DOI,文献DOI怎么找? 2213740
邀请新用户注册赠送积分活动 1223789
关于科研通互助平台的介绍 1144127