Analysis of the synergistic antifungal mechanism of small molecular combinations of essential oils at the molecular level

化学 柠檬醛 丁香酚 对接(动物) 细胞膜 小分子 生物化学 精油 有机化学 色谱法 医学 护理部
作者
Jian Ju,Yahui Guo,Yuliang Cheng,Weirong Yaoc
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:188: 115612-115612 被引量:28
标识
DOI:10.1016/j.indcrop.2022.115612
摘要

The bacteriostatic concentration of essential oil (EO) in practical application is usually higher than the flavor threshold, resulting in a lack of balance between bacteriostatic concentration and flavor, which has become the bottleneck of its application in the field of agriculture products. One of the effective ways to solve this problem is the synergistic antibacterial effect of the active components of EO. In this paper, molecular docking, independent gradient model (IGM) and symmetric matching perturbation theory (SAPT) are combined for the first time to investigated the molecular mechanism of eugenol and citral small molecules (EAC) against Aspergillus niger. The results show that EAC can combine with β-(1,3)-glucan synthase and chitin synthase proteins, and then destroy the integrity of cell wall, in which the trans-citral has the best affinity with these two enzyme proteins. In addition, EAC can bind to tryptophan, tyrosine and phenylalanine in cell membrane. The binding of citral small molecules to these three amino acids is mainly hydrogen bond, while the binding force of eugenol to them is mainly van der Waals force or π-π interaction. Finally, the synergistic antifungal effect of EAC was confirmed by the damage of membrane proteins and the leakage of cell contents. In this combination, citral binds to the cell wall, which promotes the interaction between eugenol and cell membrane, and finally leads to the serious destruction of cell membrane. The above results show that EAC has the potential to be developed into a new type of agriculture products preservative with synergistic antifungal effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助安静的睿渊采纳,获得10
1秒前
Lucas应助iaskwho采纳,获得10
1秒前
万能图书馆应助北栀采纳,获得10
3秒前
先锋完成签到 ,获得积分10
3秒前
好好发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
机智的著发布了新的文献求助10
7秒前
风涯完成签到,获得积分10
7秒前
李健的小迷弟应助贝勒采纳,获得10
8秒前
思源应助狂野世立采纳,获得10
8秒前
9秒前
wys完成签到 ,获得积分10
9秒前
禅花游鱼发布了新的文献求助10
10秒前
好好完成签到,获得积分20
11秒前
12秒前
frank完成签到,获得积分10
13秒前
fandada发布了新的文献求助10
13秒前
zmd完成签到 ,获得积分10
16秒前
科研01应助禅花游鱼采纳,获得10
18秒前
在水一方应助狂野世立采纳,获得10
19秒前
supermark123应助文件撤销了驳回
19秒前
邺忱发布了新的文献求助10
21秒前
may完成签到,获得积分10
21秒前
城南发布了新的文献求助10
24秒前
乐乐乐乐乐乐应助llig采纳,获得50
24秒前
冰魂应助机智的著采纳,获得10
25秒前
Jessie完成签到,获得积分10
26秒前
852应助zouxiang采纳,获得10
26秒前
mendicant完成签到,获得积分10
26秒前
科研通AI5应助胖虎采纳,获得10
26秒前
27秒前
爆米花应助狂野世立采纳,获得10
28秒前
科研通AI5应助善良的背包采纳,获得10
28秒前
tuzki完成签到,获得积分10
29秒前
30秒前
健健康康发布了新的文献求助30
32秒前
32秒前
bkagyin应助我爱酸菜鱼采纳,获得10
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307