Machine Learning Elucidates Design Features of Plasmid Deoxyribonucleic Acid Lipid Nanoparticles for Cell Type-Preferential Transfection

转染 质粒 DNA 纳米颗粒 纳米技术 生物物理学 化学 细胞 生物化学 材料科学 细胞生物学 生物 基因
作者
Leonardo Cheng,Yining Zhu,Jingyao Ma,Ataes Aggarwal,Wu Han Toh,Charles Shin,Will Sangpachatanaruk,Gene W. Weng,Ramya Kumar,Hai‐Quan Mao
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (42): 28735-28747 被引量:25
标识
DOI:10.1021/acsnano.4c07615
摘要

To broaden the accessibility of cell and gene therapies, it is essential to develop and optimize nonviral, cell type-preferential gene carriers such as lipid nanoparticles (LNPs). While high-throughput screening (HTS) approaches have proven effective in accelerating LNP discovery, they are often costly, labor-intensive, and do not consistently yield actionable design rules that direct screening efforts toward the most relevant chemical and formulation parameters. In this study, we employed a machine learning (ML) workflow, utilizing well-curated plasmid DNA LNP transfection data sets across six cell types, to extract compositional and chemical insights from HTS studies. Our approach achieved prediction errors averaging between 5 and 10%, depending on the cell type. By applying SHapley Additive exPlanations to our ML models, we uncovered key composition-function relationships that govern cell type-preferential LNP transfection efficiency. Notably, we identified consistent LNP composition parameters that enhance in vitro transfection efficiency across diverse cell types, including a helper lipid molar percentage of charged lipids between 9 and 50% and the inclusion of cationic/zwitterionic helper lipids. Additionally, several parameters were found to modulate cell type-preferentiality, such as the total molar percentage of ionizable and helper lipids, N/P ratio, PEGylated lipid molar percentage of uncharged lipids, and hydrophobicity of the helper lipid. This study leverages HTS of compositionally diverse LNP libraries combined with ML analysis to elucidate the interactions between lipid components in LNP formulations, providing insights that contribute to the design of LNP compositions tailored for cell type-preferential transfection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
刚刚
追寻代真完成签到,获得积分10
1秒前
科研通AI2S应助曾经采纳,获得10
1秒前
111完成签到,获得积分10
2秒前
666发布了新的文献求助10
3秒前
4秒前
怡然静竹完成签到,获得积分10
4秒前
听风者完成签到,获得积分10
5秒前
6秒前
KYTQQ完成签到 ,获得积分10
6秒前
超帅花瓣发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
9秒前
10秒前
阿肖呀完成签到,获得积分10
10秒前
无花果应助JF123_采纳,获得10
10秒前
任性铅笔发布了新的文献求助10
12秒前
12秒前
贪玩阑香发布了新的文献求助10
13秒前
小姚发布了新的文献求助30
13秒前
领导范儿应助1111采纳,获得10
13秒前
kiki0808完成签到 ,获得积分10
14秒前
从来都不会放弃zr完成签到,获得积分10
14秒前
15秒前
风中思松给风中思松的求助进行了留言
16秒前
hhhh完成签到,获得积分10
16秒前
Orange应助新乌托邦采纳,获得10
17秒前
17秒前
小姚完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
yiyi完成签到,获得积分10
20秒前
wlscj应助小北采纳,获得20
20秒前
充电宝应助Ruoru采纳,获得30
20秒前
鲸妹冲啊发布了新的文献求助10
20秒前
21秒前
脑洞疼应助louiselong采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543