已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel performance prediction method for harmonic reducers based on the trend-enhanced Fisher’s discriminant ratio-Wiener process

判别式 线性判别分析 过程(计算) 统计 数学 应用数学 计算机科学 模式识别(心理学) 人工智能 操作系统
作者
Yixin Zhang,Yang Xu,Guosheng Xie,Xiaowei Sheng,Peibo Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016133-016133
标识
DOI:10.1088/1361-6501/ad83ea
摘要

Abstract Harmonic reducers, as core components of industrial robots, play a critical role in maintaining robot health. Performance degradation assessment and remaining useful life (RUL) prediction are essential for ensuring the operational reliability of such robots. To address the multistage characteristics and stochastic uncertainties in the performance degradation of harmonic reducers, a performance prediction method based on Fisher’s discriminant ratio and Wiener process is proposed. Firstly, the health indicator construction is defined as an optimization problem based on Fisher’s discriminant ratio and trend monotonicity constraints. By leveraging the sum of the multiplication of frequency amplitudes and optimized weights, precise segmentation of the multistage degradation process over the entire lifecycle is achieved. Notably, the optimized weights can automatically identify the resonance frequency bands caused by damage. Subsequently, a nonlinear Wiener process model with a drift coefficient in the form of a power function is established. The probability density function expression for RUL is derived based on the concept of first hit time. Additionally, a logarithmic likelihood function for the unknown parameters in the degradation model is constructed. The experimental results indicate that the proposed method surpasses the other two Wiener process models in terms of root mean square error, mean absolute percentage error, and cumulative relative accuracy. This provides robust support for preventive maintenance decision-making for harmonic reducers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YH发布了新的文献求助10
1秒前
CodeCraft应助姗姗采纳,获得10
2秒前
Mkstar发布了新的文献求助10
3秒前
CCsouljump完成签到 ,获得积分10
3秒前
丘比特应助牛牛牛采纳,获得10
3秒前
yydy发布了新的文献求助10
3秒前
帅气善斓应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
乐乐应助出离离离采纳,获得20
4秒前
思源应助木有鱼丸采纳,获得10
4秒前
LaTeXer应助072采纳,获得60
5秒前
llei完成签到 ,获得积分10
5秒前
5秒前
打打应助言欢欢采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Mkstar完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
12秒前
完美的冬灵完成签到 ,获得积分10
14秒前
15秒前
希望天下0贩的0应助奶斯采纳,获得10
16秒前
16秒前
林洁佳发布了新的文献求助10
16秒前
wz完成签到,获得积分10
18秒前
牛牛牛发布了新的文献求助10
18秒前
20秒前
20秒前
优美紫槐应助姗姗采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722787
求助须知:如何正确求助?哪些是违规求助? 5272825
关于积分的说明 15297801
捐赠科研通 4871645
什么是DOI,文献DOI怎么找? 2616131
邀请新用户注册赠送积分活动 1565990
关于科研通互助平台的介绍 1522840