热液循环
氮氧化物
催化作用
化学工程
密度泛函理论
硫黄
选择性催化还原
活化能
化学
无机化学
计算化学
物理化学
吸附
有机化学
工程类
燃烧
作者
Lingfeng Jia,Li Zhang,Bing Liu,Huifang Cheng,Huiquan Li,Zhen Zhao,Wenshuai Zhu,Weiyu Song,Jian Liu,Jixing Liu
标识
DOI:10.1021/acs.est.4c04101
摘要
Hitherto, sulfur poisoning and hydrothermal aging have still been the challenges faced in practical applications of the Cu-SSZ-13 catalyst for the selective catalytic reduction (SCR) of NOx from diesel engine exhaust. Here, we elaborately design and conduct an in-depth investigation of the synthetic effects of hydrothermal aging and SO2 poisoning on pristine Cu-SSZ-13 and Cu-SSZ-13@Ce0.75Zr0.25O2 core@shell structure catalysts (Cu@CZ). It has been discovered that Cu@CZ susceptible to 750 °C with 5 vol % H2O followed by 200 ppm SO2 with 5 vol % H2O (Cu@CZ-A-S) could still maintain nearly 100% NOx conversion across the significantly wider temperature region of 200-425 °C, which is remarkably broader than that of the Cu-SSZ-13-A-S (300-400 °C) counterpart. The experimental results show that the hydrothermal aging process results in the migration of highly active Cu species within the cage of Cu-SSZ-13 to the CZ surface, forming CuO/CZ with abundant interfaces, which significantly enhances the adsorption and subsequent activation of NO, leading to the generation of reactive N2O3 and HONO intermediates. Moreover, density functional theory (DFT) calculations reveal that the H of the HONO* species can function as Brønsted acid sites, effectively adsorbing NH3 to generate the active NH4NO2* intermediate, which readily decomposes into N2 and H2O. Furthermore, this pathway is the rate-determining step with an energy barrier of 0.93 eV, notably lower than that of the "standard SCR" pathway (1.42 eV). Therefore, the formation of the new CuO/CZ interface profoundly boosts the low-temperature NH3-SCR activity and improves the coresistance of the Cu@CZ catalyst to sulfur poisoning and hydrothermal aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI