Transforming Hypertension Diagnosis and Management in The Era of Artificial Intelligence: A 2023 National Heart, Lung, and Blood Institute (NHLBI) Workshop Report

医学 分析 血压 肾脏疾病 疾病 精密医学 医疗保健 重症监护医学 人工智能 数据科学 计算机科学 内科学 病理 经济增长 经济
作者
Daichi Shimbo,Rashmee U. Shah,Marwah Abdalla,Ritu Agarwal,Faraz S. Ahmad,Gabriel Anaya,Zachi I. Attia,Sheana Bull,Alex R. Chang,Yvonne Commodore‐Mensah,Keith C. Ferdinand,Kensaku Kawamoto,Rohan Khera,Jane A. Leopold,James Luo,Sonya Makhni,Bobak J. Mortazavi,Young S. Oh,Lucia Savage,Erica S. Spatz
出处
期刊:Hypertension [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1161/hypertensionaha.124.22095
摘要

Hypertension is among the most important risk factors for cardiovascular disease, chronic kidney disease, and dementia. The artificial intelligence (AI) field is advancing quickly, and there has been little discussion on how AI could be leveraged for improving the diagnosis and management of hypertension. AI technologies, including machine learning tools, could alter the way we diagnose and manage hypertension, with potential impacts for improving individual and population health. The development of successful AI tools in public health and health care systems requires diverse types of expertise with collaborative relationships between clinicians, engineers, and data scientists. Unbiased data sources, management, and analyses remain a foundational challenge. From a diagnostic standpoint, machine learning tools may improve the measurement of blood pressure and be useful in the prediction of incident hypertension. To advance the management of hypertension, machine learning tools may be useful to find personalized treatments for patients using analytics to predict response to antihypertension medications and the risk for hypertension-related complications. However, there are real-world implementation challenges to using AI tools in hypertension. Herein, we summarize key findings from a diverse group of stakeholders who participated in a workshop held by the National Heart, Lung, and Blood Institute in March 2023. Workshop participants presented information on communication gaps between clinical medicine, data science, and engineering in health care; novel approaches to estimating BP, hypertension risk, and BP control; and real-world implementation challenges and issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Easy完成签到,获得积分10
1秒前
阿尔文完成签到,获得积分10
1秒前
2秒前
Lynn发布了新的文献求助10
3秒前
善学以致用应助陆未离采纳,获得10
4秒前
jj发布了新的文献求助10
4秒前
呆萌棒棒糖完成签到,获得积分10
5秒前
5秒前
Set4Life完成签到,获得积分10
6秒前
冷艳咖啡豆完成签到,获得积分10
6秒前
搜集达人应助墨玉采纳,获得10
7秒前
7秒前
8秒前
Youth完成签到,获得积分10
8秒前
卓垚完成签到,获得积分10
9秒前
wangbw完成签到,获得积分10
10秒前
12秒前
热闹的冬天完成签到,获得积分10
13秒前
兴奋的太兰完成签到,获得积分10
14秒前
14秒前
yue发布了新的文献求助10
15秒前
科研通AI5应助焱垚采纳,获得10
15秒前
冰魂应助尹博士采纳,获得10
15秒前
17秒前
左丘酬海发布了新的文献求助100
18秒前
18秒前
Orange应助王小明采纳,获得10
19秒前
朴实凝雁完成签到,获得积分10
20秒前
Medneuron发布了新的文献求助10
21秒前
龙眼完成签到,获得积分10
22秒前
缪甲烷完成签到,获得积分10
22秒前
23秒前
星辰大海应助朴实凝雁采纳,获得10
24秒前
25秒前
超级小刺猬完成签到 ,获得积分10
25秒前
jj完成签到,获得积分10
26秒前
26秒前
美好鞅完成签到,获得积分20
27秒前
晴天完成签到,获得积分10
28秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823063
求助须知:如何正确求助?哪些是违规求助? 3365629
关于积分的说明 10436282
捐赠科研通 3084662
什么是DOI,文献DOI怎么找? 1696943
邀请新用户注册赠送积分活动 816109
科研通“疑难数据库(出版商)”最低求助积分说明 769389