已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of potential biomarkers for lung adenocarcinoma: a study based on bioinformatics analysis combined with validation experiments

腺癌 基因 生物 单变量 计算生物学 生存分析 单变量分析 生物信息学 肿瘤科 遗传学 多元分析 癌症 内科学 医学 多元统计 计算机科学 机器学习
作者
Chuchu Zhang,Ying Liu,Yingdong Lu,Zehui Chen,Yi Liu,Qiyuan Mao,Shengchuan Bao,Ge Zhang,Ying Zhang,Hongsheng Lin,Haiyan Li
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1425895
摘要

Background The prognosis for lung adenocarcinoma (LUAD) remains dismal, with a 5-year survival rate of <20%. Therefore, the purpose of this study was to identify potentially reliable biomarkers in LUAD by machine learning combination with Mendelian randomization (MR). Methods TCGA-LUAD, GSE40791, and GSE31210 were employed this study. Key module differential genes were identified through differentially expressed analysis and weighted gene co-expression network analysis (WGCNA). Furthermore, candidate biomarkers were derived from protein–protein interaction network (PPI) and machine learning. Ultimately, biomarkers were confirmed using MR analysis. In addition, immunohistochemistry was used to detect the expression levels of genes that have a causal relationship to LUAD in the LUAD group and the control group. Cell experiments were conducted to validate the effect of screening genes on proliferation, migration, and apoptosis of LUAD cells. The correlation between the screened genes and immune infiltration was determined by CIBERSORT algorithm. In the end, the gene-related drugs were predicted through the Drug–Gene Interaction database. Results In total, 401 key module differential genes were obtained by intersecting of 5,702 differentially expressed genes (DEGs) and 406 key module genes. Thereafter, GIMAP6, CAV1, PECAM1, and TGFBR2 were identified. Among them, only TGFBR2 had a significant causal relationship with LUAD (p=0.04, b=−0.06), and it is a protective factor for LUAD. Subsequently, sensitivity analyses showed that there were no heterogeneity and horizontal pleiotropy in the univariate MR results, and the results were not overly sensitive to individual SNP loci, further validating the reliability of univariate Mendelian randomization (UVMR) results. However, no causal relationship was found between them by reverse MR analysis. Meanwhile, TGFBR2 expression was decreased in LUAD group through immunohistochemistry. TGFBR2 can inhibit proliferation and migration of lung adenocarcinoma cell line A549 and promote apoptosis of A549 cells. Immune infiltration analysis suggested a potential link between TGFBR2 expression and immune infiltration. Finally, Irinotecan and Hesperetin were predicted through DGIDB database. Conclusion In this study, TGFBR2 was identified as a biomarker of LUAD, which provided a new idea for the treatment strategy of LUAD and may aid in the development of personalized immunotherapy strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助韩琰淑睿采纳,获得10
刚刚
MchemG应助烟酒不离生采纳,获得10
刚刚
科研通AI5应助碧蓝的往事采纳,获得30
1秒前
乔心发布了新的文献求助10
2秒前
aurora发布了新的文献求助10
5秒前
小蘑菇应助乔心采纳,获得10
6秒前
思源应助RUOXI采纳,获得10
6秒前
美少女完成签到,获得积分10
7秒前
本恩宁完成签到,获得积分10
8秒前
8秒前
ZJING9发布了新的文献求助10
8秒前
10秒前
小二郎应助Leo采纳,获得10
10秒前
11秒前
本恩宁发布了新的文献求助10
11秒前
Yxxx完成签到,获得积分10
11秒前
12秒前
15秒前
15秒前
冰魂应助烟酒不离生采纳,获得10
15秒前
隐形曼青应助tsttst采纳,获得30
16秒前
七yy发布了新的文献求助30
16秒前
CipherSage应助天天采纳,获得10
16秒前
18秒前
18秒前
轻松柜子发布了新的文献求助10
18秒前
19秒前
Stringgggg完成签到,获得积分10
20秒前
21秒前
哈哈哈发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
zzz发布了新的文献求助10
25秒前
aaa完成签到,获得积分10
26秒前
香蕉觅云应助一堃采纳,获得10
26秒前
倾卿如玉完成签到 ,获得积分10
26秒前
天天发布了新的文献求助10
27秒前
冰魂应助烟酒不离生采纳,获得10
28秒前
Gardenia发布了新的文献求助10
28秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827082
求助须知:如何正确求助?哪些是违规求助? 3369330
关于积分的说明 10455680
捐赠科研通 3088971
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817399
科研通“疑难数据库(出版商)”最低求助积分说明 770217