化学
氢
硝酸盐
氢键
光化学
还原(数学)
无机化学
分子
有机化学
几何学
数学
作者
Shisheng Zheng,X. Yang,Zhong-Zhang Shi,Haowen Ding,Feng Pan,Jian‐Feng Li
摘要
The electrochemical nitrate reduction reaction (NO3RR) offers a promising solution for remediating nitrate-polluted wastewater while enabling the sustainable production of ammonia. The control strategy of surface-active hydrogen (*H) is extensively employed to enhance the kinetics of the NO3RR, but atomic understanding lags far behind the experimental observations. Here, we decipher the cation-water-adsorbate interactions in regulating the NO3RR kinetics at the Cu (111) electrode/electrolyte interface using AIMD simulations with a slow-growth approach. We demonstrate that the key oxygen-containing intermediates of the NO3RR (e.g., *NO, *NO2, and *NO3) will stably coordinate with the cations, impeding their integration with the hydrogen bond network and further their hydrogenation by interfacial water molecules due to steric hindrance. The *H can migrate across the interface with a low energy barrier, and its hydrogenation barrier with oxygen-containing species remains unaffected by cations, offering a potent supplement to the hydrogenation process, playing the predominant factor by which the *H facilitates NO3RR reaction kinetic. This study provides valuable insights for understanding the reaction mechanism of NO3RR by fully considering the cation-water-adsorbate interactions, which can aid in the further development of the electrolyte and electrocatalysts for efficient NO3RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI