Predictors of smartphone addiction in adolescents with depression: combing the machine learning and moderated mediation model approach

调解 智能手机成瘾 梳理 调解 心理学 萧条(经济学) 上瘾 临床心理学 社会心理学 精神科 政治学 地图学 宏观经济学 经济 法学 地理
作者
Yongjie Zhou,Chenran Pei,Hai-Long Yin,Rong‐Ting Zhu,Nan Yan,Lan Wang,Xuankun Zhang,Tian Lan,Junchang Li,Lingyun Zeng,Lijuan Huo
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5007740/v1
摘要

Abstract Smartphone addiction (SA) significantly impacts the physical and mental health of adolescents, and can further exacerbate existing mental health issues in those with depression. However, fewer studies have focused on the predictors of SA in adolescents with depression. This study employs machine learning methods to identify key risk factors for SA and utilizes the Interpretable SHapley Additive exPlanations (SHAP) method to enhance model interpretability and assess the importance of each risk factor. Additionally, by constructing a mediation moderation model, the interactions between significant risk factors is analyzed. The study included 2,203 adolescents with depression. Machine learning results from three models (random forest, logistic regression, and decision tree) consistently identified emotion-focused coping, rumination, and school bullying as the strongest predictors of SA. Further mediation moderation analyses based on the Interaction of Person-Affect-Cognition-Execution (I-PACE) model revealed that rumination significantly mediated the relationship between school bullying and SA, and emotion-focused coping significantly moderated the relationships between school bullying and both rumination and SA. This is the first study to use machine learning to explore the predictors of SA in depressive adolescents and further analyze the interactions among these predictors. Future interventions for SA in adolescents with depression may benefit from psychotherapy that addresses emotion-focused coping and rumination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的太清完成签到,获得积分10
1秒前
贤惠的靖易完成签到,获得积分10
2秒前
3秒前
3秒前
陶醉元冬完成签到,获得积分10
4秒前
闪闪的大炮完成签到,获得积分10
4秒前
4秒前
菊花吗完成签到,获得积分10
5秒前
粗心的chen发布了新的文献求助10
5秒前
宋利安完成签到,获得积分10
5秒前
SciGPT应助徐青青采纳,获得10
6秒前
爆米花应助momo采纳,获得10
7秒前
8秒前
9秒前
半糖糖发布了新的文献求助10
9秒前
9秒前
上官问寒应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
上官问寒应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得30
13秒前
13秒前
懵懂的海露完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
Z啊发布了新的文献求助10
16秒前
kx完成签到,获得积分10
17秒前
爆米花应助smin采纳,获得10
17秒前
19秒前
momo发布了新的文献求助10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4196034
求助须知:如何正确求助?哪些是违规求助? 3731817
关于积分的说明 11752945
捐赠科研通 3406226
什么是DOI,文献DOI怎么找? 1868943
邀请新用户注册赠送积分活动 925055
科研通“疑难数据库(出版商)”最低求助积分说明 835649