Exploring AI-driven approaches for unstructured document analysis and future horizons

计算机科学 计算科学与工程 新视野 非结构化数据 数据科学 情报检索 万维网 计算科学 数据挖掘 大数据 航天器 工程类 航空航天工程
作者
Supriya V. Mahadevkar,Shruti Patil,Ketan Kotecha,Lim Way Soong,Tanupriya Choudhury
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1) 被引量:28
标识
DOI:10.1186/s40537-024-00948-z
摘要

Abstract In the current industrial landscape, a significant number of sectors are grappling with the challenges posed by unstructured data, which incurs financial losses amounting to millions annually. If harnessed effectively, this data has the potential to substantially boost operational efficiency. Traditional methods for extracting information have their limitations; however, solutions powered by artificial intelligence (AI) could provide a more fitting alternative. There is an evident gap in scholarly research concerning a comprehensive evaluation of AI-driven techniques for the extraction of information from unstructured content. This systematic literature review aims to identify, assess, and deliberate on prospective research directions within the field of unstructured document information extraction. It has been observed that prevailing extraction methods primarily depend on static patterns or rules, often proving inadequate when faced with complex document structures typically encountered in real-world scenarios, such as medical records. Datasets currently available to the public suffer from low quality and are tailored for specific tasks only. This underscores an urgent need for developing new datasets that accurately reflect complex issues encountered in practical settings. The review reveals that AI-based techniques show promise in autonomously extracting information from diverse unstructured documents, encompassing both printed and handwritten text. Challenges arise, however, when dealing with varied document layouts. Proposing a framework through hybrid AI-based approaches, this review envisions processing a high-quality dataset for automatic information extraction from unstructured documents. Additionally, it emphasizes the importance of collaborative efforts between organizations and researchers to address the diverse challenges associated with unstructured data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张杰发布了新的文献求助10
1秒前
顾矜应助自信书文采纳,获得10
1秒前
1秒前
漱玉完成签到,获得积分10
1秒前
Marilinta完成签到,获得积分10
2秒前
爆米花应助Wddd采纳,获得10
3秒前
zzzzzzzzzj发布了新的文献求助10
3秒前
刘鹏祥发布了新的文献求助10
3秒前
zhang完成签到,获得积分10
3秒前
CodeCraft应助坚强幼南采纳,获得10
5秒前
5秒前
热情迎彤发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
9秒前
9秒前
zhang发布了新的文献求助10
10秒前
Wiesen发布了新的文献求助10
10秒前
453452542完成签到,获得积分10
11秒前
小龙发布了新的文献求助10
11秒前
11秒前
珉志完成签到,获得积分10
12秒前
YC完成签到,获得积分10
14秒前
今后应助Vicky采纳,获得10
14秒前
wuuw发布了新的文献求助10
14秒前
Bobby完成签到,获得积分10
14秒前
Michaelfall发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
wljine发布了新的文献求助30
15秒前
LTF发布了新的文献求助10
15秒前
wendy完成签到,获得积分10
16秒前
ding应助细心的天采纳,获得10
16秒前
小鲟鱼完成签到,获得积分10
17秒前
17秒前
忧心的从蓉完成签到,获得积分10
17秒前
KKK研完成签到,获得积分10
17秒前
18秒前
隐形曼青应助冷酷雪碧采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070552
求助须知:如何正确求助?哪些是违规求助? 4291675
关于积分的说明 13371209
捐赠科研通 4111892
什么是DOI,文献DOI怎么找? 2251771
邀请新用户注册赠送积分活动 1256853
关于科研通互助平台的介绍 1189497