Advances in exosome plasmonic sensing: Device integration strategies and AI-aided diagnosis

外体 等离子体子 纳米技术 计算机科学 计算生物学 微泡 材料科学 化学 生物 光电子学 小RNA 生物化学 基因
作者
Xiangyujie Lin,Jiaheng Zhu,Jiaqing Shen,Youyu Zhang,Jinfeng Zhu
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:266: 116718-116718 被引量:6
标识
DOI:10.1016/j.bios.2024.116718
摘要

Exosomes, as next-generation biomarkers, has great potential in tracking cancer progression. They face many detection limitations in cancer diagnosis. Plasmonic biosensors have attracted considerable attention at the forefront of exosome detection, due to their label-free, real-time, and high-sensitivity features. Their advantages in multiplex immunoassays of minimal liquid samples establish the leading position in various diagnostic studies. This review delineates the application principles of plasmonic sensing technologies, highlighting the importance of exosomes-based spectrum and image signals in disease diagnostics. It also introduces advancements in miniaturizing plasmonic biosensing platforms of exosomes, which can facilitate point-of-care testing for future healthcare. Nowadays, inspired by the surge of artificial intelligence (AI) for science and technology, more and more AI algorithms are being adopted to process the exosome spectrum and image data from plasmonic detection. Using representative algorithms of machine learning has become a mainstream trend in plasmonic biosensing research for exosome liquid biopsy. Typically, these algorithms process complex exosome datasets efficiently and establish powerful predictive models for precise diagnosis. This review further discusses critical strategies of AI algorithm selection in exosome-based diagnosis. Particularly, we categorize the AI algorithms into the interpretable and uninterpretable groups for exosome plasmonic detection applications. The interpretable AI enhances the transparency and reliability of diagnosis by elucidating the decision-making process, while the uninterpretable AI provides high diagnostic accuracy with robust data processing by a "black-box" working mode. We believe that AI will continue to promote significant progress of exosome plasmonic detection and mobile healthcare in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的草莓完成签到,获得积分10
1秒前
阿托品完成签到 ,获得积分10
6秒前
9秒前
深情安青应助贱小贱采纳,获得10
10秒前
刘帅发布了新的文献求助20
12秒前
13秒前
搜集达人应助希希采纳,获得10
16秒前
16秒前
17秒前
genau000完成签到 ,获得积分10
18秒前
冷静映安完成签到,获得积分10
18秒前
淡淡桐完成签到,获得积分10
19秒前
归尘发布了新的文献求助10
22秒前
科研通AI2S应助徐佳乐采纳,获得10
23秒前
24秒前
Kwanman完成签到,获得积分10
24秒前
HEIKU应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
科研通AI2S应助苑世朝采纳,获得10
25秒前
烟花应助香蕉傲之采纳,获得10
28秒前
希希发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
32秒前
zxy完成签到 ,获得积分10
34秒前
徐佳乐发布了新的文献求助10
34秒前
贱小贱发布了新的文献求助10
35秒前
36秒前
37秒前
秋子发布了新的文献求助10
40秒前
沐沐发布了新的文献求助10
40秒前
米尔的猫发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648