Advances in exosome plasmonic sensing: Device integration strategies and AI-aided diagnosis

外体 等离子体子 纳米技术 计算机科学 计算生物学 微泡 材料科学 化学 生物 光电子学 小RNA 生物化学 基因
作者
Xiangyujie Lin,Jiaheng Zhu,Jiaqing Shen,Youyu Zhang,Jinfeng Zhu
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:266: 116718-116718 被引量:23
标识
DOI:10.1016/j.bios.2024.116718
摘要

Exosomes, as next-generation biomarkers, has great potential in tracking cancer progression. They face many detection limitations in cancer diagnosis. Plasmonic biosensors have attracted considerable attention at the forefront of exosome detection, due to their label-free, real-time, and high-sensitivity features. Their advantages in multiplex immunoassays of minimal liquid samples establish the leading position in various diagnostic studies. This review delineates the application principles of plasmonic sensing technologies, highlighting the importance of exosomes-based spectrum and image signals in disease diagnostics. It also introduces advancements in miniaturizing plasmonic biosensing platforms of exosomes, which can facilitate point-of-care testing for future healthcare. Nowadays, inspired by the surge of artificial intelligence (AI) for science and technology, more and more AI algorithms are being adopted to process the exosome spectrum and image data from plasmonic detection. Using representative algorithms of machine learning has become a mainstream trend in plasmonic biosensing research for exosome liquid biopsy. Typically, these algorithms process complex exosome datasets efficiently and establish powerful predictive models for precise diagnosis. This review further discusses critical strategies of AI algorithm selection in exosome-based diagnosis. Particularly, we categorize the AI algorithms into the interpretable and uninterpretable groups for exosome plasmonic detection applications. The interpretable AI enhances the transparency and reliability of diagnosis by elucidating the decision-making process, while the uninterpretable AI provides high diagnostic accuracy with robust data processing by a "black-box" working mode. We believe that AI will continue to promote significant progress of exosome plasmonic detection and mobile healthcare in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jewelliang发布了新的文献求助10
1秒前
喜悦一德发布了新的文献求助10
1秒前
2秒前
Tourist应助Mehrioe采纳,获得10
2秒前
科研通AI6应助lasfjas采纳,获得10
2秒前
爆米花应助lasfjas采纳,获得10
2秒前
哈哈发布了新的文献求助10
3秒前
桐桐应助lizzie0205采纳,获得10
3秒前
4秒前
huhu完成签到 ,获得积分10
5秒前
5秒前
海之梦发布了新的文献求助10
6秒前
liwei完成签到,获得积分10
6秒前
6秒前
6秒前
街道办柏阿姨完成签到 ,获得积分10
7秒前
7秒前
abb先生发布了新的文献求助10
7秒前
jewelliang完成签到,获得积分10
7秒前
大力的怜梦完成签到,获得积分10
8秒前
挽星完成签到 ,获得积分10
8秒前
充电宝应助动人的书雪采纳,获得10
9秒前
12345发布了新的文献求助10
9秒前
9秒前
小马甲应助嘟嘟嘟采纳,获得10
10秒前
11秒前
胡雨轩发布了新的文献求助10
11秒前
lasfjas发布了新的文献求助10
11秒前
Zhou完成签到,获得积分20
12秒前
lucky完成签到,获得积分10
12秒前
12秒前
DXK给DXK的求助进行了留言
13秒前
14秒前
帅气的秘密完成签到 ,获得积分10
15秒前
聪慧的怀绿完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助150
16秒前
噗噗发布了新的文献求助10
17秒前
Biu完成签到 ,获得积分10
17秒前
17秒前
ding应助袁睿韬采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112070
求助须知:如何正确求助?哪些是违规求助? 4320005
关于积分的说明 13460639
捐赠科研通 4150914
什么是DOI,文献DOI怎么找? 2274512
邀请新用户注册赠送积分活动 1276377
关于科研通互助平台的介绍 1214608